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

Performance and Cost

Airplane Passengers Range (mi) Speed  (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

 Which of the following airplanes has the best 
performance?

 How much faster is the Concorde vs. the 747
 How much bigger is the 747 vs. DC-8?
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Performance and Cost 

• Which computer is fastest?
• Not so simple

– Scientific simulation – FP performance
– Program development – Integer performance
– Database workload – Memory, I/O

01 Feb 2013 3Computer Architecture@MNIT





Performance of Computers
• Want to buy the fastest computer for what 

you want to do?
– Workload is all-important
– Correct measurement and analysis

• Want to design the fastest computer for what 
the customer wants to pay?
– Cost is an important criterion
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

Defining Performance
• What is important to whom?
• Computer system user

– Minimize elapsed time for program = time_end –
time_start

– Called response time

• Computer center manager
– Maximize completion rate = #jobs/second
– Called throughput
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Response Time vs. Throughput
• Is throughput = 1/av. response time?

– Only if NO overlap
– Otherwise, throughput > 1/av. response time
– E.g. a lunch buffet – assume 5 entrees
– Each person takes 2 minutes/entrée
– Throughput is 1 person every 2 minutes
– BUT time to fill up tray is 10 minutes
– Why and what would the throughput be otherwise?

• 5 people simultaneously filling tray (overlap)
• Without overlap, throughput = 1/10
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

What is Performance for us?
• For computer architects

– CPU time = time spent running a program

• Intuitively, bigger should be faster, so:
– Performance = 1/X time, where X is response, CPU 

execution, etc.

• Elapsed time = CPU time + I/O wait
• We will concentrate on CPU time
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

Improve Performance
• Improve (a) response time or (b) throughput?

– Faster CPU
• Helps both (a) and (b)

– Add more CPUs
• Helps (b) and perhaps (a) due to less queueing
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

Performance Comparison
• Machine A is n times faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = n
• Machine A is x% faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g. time(A) = 10s, time(B) = 15s
– 15/10 = 1.5 => A is 1.5 times faster than B
– 15/10 = 1.5 => A is 50% faster than B
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

Breaking Down Performance

• A program is broken into instructions
– H/W is aware of instructions, not programs

• At lower level, H/W breaks instructions into cycles
– Lower level state machines change state every cycle

• For example:
– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle = 1ns
– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns
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Iron Law

Processor Performance  =   ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer      Processor Designer         Chip Designer

Instructions Cycles

Program Instruction
Time

Cycle

(code size)

= X X

(CPI) (cycle time)
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Iron Law
• Instructions/Program

– Instructions executed, not static code size
– Determined by algorithm, compiler, ISA

• Cycles/Instruction
– Determined by ISA and CPU organization
– Overlap among instructions reduces this term

• Time/cycle
– Determined by technology, organization, clever circuit 

design
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Our Goal
• Minimize time which is the product, NOT 

isolated terms
• Common error to miss terms while devising 

optimizations
– e.g. ISA change to decrease instruction count
– BUT leads to CPU organization which makes clock 

slower

• Bottom line: terms are inter-related
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Other Metrics
• MIPS and MFLOPS
• MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106)

• But MIPS has serious shortcomings
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

Problems with MIPS
• E.g. without FP hardware, an FP op may take 50 

single-cycle instructions
• With FP hardware, only one 2-cycle instruction

 Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program 

decreases (why?)
– Total execution time 

decreases
 BUT, MIPS gets worse!

50/50 => 2/1
50 => 1

50 => 2
50 MIPS => 2 MIPS
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

Problems with MIPS
• Ignores program
• Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?
– Same compiler, same ISA
– E.g. same binary running on AMD Phenom, Intel 

Core i7
– Why? Instr/program is constant and can be 

ignored
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

Other Metrics
• MFLOPS = FP ops in program/(execution time x 106)

• Assuming FP ops independent of compiler and ISA
– Often safe for numeric codes: matrix size determines # of 

FP ops/program
– However, not always safe:

• Missing instructions (e.g. FP divide)
• Optimizing compilers

• Relative MIPS and normalized MFLOPS
– Adds to confusion
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Rules
• Use ONLY Time
• Beware when reading, especially if details are 

omitted
• Beware of Peak

– “Guaranteed not to exceed”
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Iron Law Example
• Machine A: clock 1ns, CPI 2.0, for program x
• Machine B: clock 2ns, CPI 1.2, for program x
• Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle
Time(A) = N x 2.0 x 1 = 2N
Time(B) = N x 1.2 x 2 = 2.4N
Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this 
program
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

Iron Law Example

Keep clock(A) @ 1ns and clock(B)  @2ns
For equal performance, if CPI(B)=1.2, what is 

CPI(A)?
Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4
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

Iron Law Example

• Keep CPI(A)=2.0 and CPI(B)=1.2
• For equal performance, if clock(B)=2ns, 

what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns
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

Which Programs
• Execution time of what program?
• Best case – your always run the same set of 

programs
– Port them and time the whole workload

• In reality, use benchmarks
– Programs chosen to measure performance
– Predict performance of actual workload
– Saves effort and money
– Representative? Honest? Benchmarketing…
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

How to Average

• One answer: for total execution time, how 
much faster is B? 9.1x

Machine A Machine B
Program 1 1 10
Program 2 1000 100
Total 1001 110
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

How to Average
• Another: arithmetic mean (same result)
• Arithmetic mean of times: 
• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1x
• Valid only if programs run equally often, so use 

weighted arithmetic mean:
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

Other Averages
• E.g., 30 mph for first 10 miles, then 90 mph 

for next 10 miles, what is average speed?
• Average speed = (30+90)/2 WRONG
• Average speed = total distance / total time

= (20 / (10/30 + 10/90))
= 45 mph
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Harmonic Mean
• Harmonic mean of rates =

• Use HM if forced to start and end with rates (e.g. 
reporting MIPS or MFLOPS)

• Why?
– Rate has time in denominator
– Mean should be proportional to inverse of sums of 

time (not sum of inverses)
– See: J.E. Smith, “Characterizing computer performance 

with a single number,” CACM Volume 31 ,  Issue 10  
(October 1988), pp. 1202-1206.







∑

=

n

i nrate

n

1 )(
1

01 Feb 2013 26Computer Architecture@MNIT





Dealing with Ratios

• If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10
Program 2 1000 100
Total 1001 110

Machine A Machine B
Program 1 1 10
Program 2 1 0.1
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

Dealing with Ratios

• Average for machine A is 1, average for 
machine B is 5.05

• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B
Program 1 0.1 1
Program 2 10 1
Average 5.05 1
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

Geometric Mean
• Use geometric mean for ratios
• Geometric mean of ratios = 

• Independent of reference machine
• In the example, GM for machine a is 1, for 

machine B is also 1
– Normalized with respect to either machine
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

But…
• GM of ratios is not proportional to total time
• AM in example says machine B is 9.1 times faster
• GM says they are equal
• If we took total execution time, A and B are equal 

only if
– Program 1 is run 100 times more often than program 2

• Generally, GM will mispredict for three or more 
machines
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Summary
• Use AM for times
• Use HM if forced to use rates
• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to 
compute time
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Benchmarks: SPEC2000
• System Performance Evaluation Cooperative

– Formed in 80s to combat benchmarketing
– SPEC89, SPEC92, SPEC95, SPEC2000

• 12 integer and 14 floating-point programs
– Sun Ultra-5 300MHz reference machine has score 

of 100
– Report GM of ratios to reference machine
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

Benchmarks: SPEC CINT2000
Benchmark Description
164.gzip Compression
175.vpr FPGA place and route
176.gcc C compiler
181.mcf Combinatorial optimization
186.crafty Chess
197.parser Word processing, grammatical analysis
252.eon Visualization (ray tracing)
253.perlbmk PERL script execution
254.gap Group theory interpreter
255.vortex Object-oriented database
256.bzip2 Compression
300.twolf Place and route simulator
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Benchmarks: SPEC CFP2000
Benchmark Description
168.wupwise Physics/Quantum Chromodynamics
171.swim Shallow water modeling
172.mgrid Multi-grid solver: 3D potential field
173.applu Parabolic/elliptic PDE
177.mesa 3-D graphics library
178.galgel Computational Fluid Dynamics
179.art Image Recognition/Neural Networks
183.equake Seismic Wave Propagation Simulation
187.facerec Image processing: face recognition
188.ammp Computational chemistry
189.lucas Number theory/primality testing
191.fma3d Finite-element Crash Simulation
200.sixtrack High energy nuclear physics accelerator design
301.apsi Meteorology: Pollutant distribution
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Thank You
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