


Computer System
Performance

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226:Computer Architecture
Lecture 4 (01 Feb 2013)



Performance and Cost

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

 Which of the following airplanes has the best
performance?

 How much faster is the Concorde vs. the 747
 How much bigger is the 747 vs. DC-8?

01 Feb 2013 2Computer Architecture@MNIT



Performance and Cost

• Which computer is fastest?
• Not so simple

– Scientific simulation – FP performance
– Program development – Integer performance
– Database workload – Memory, I/O

01 Feb 2013 3Computer Architecture@MNIT



Performance of Computers
• Want to buy the fastest computer for what

you want to do?
– Workload is all-important
– Correct measurement and analysis

• Want to design the fastest computer for what
the customer wants to pay?
– Cost is an important criterion

01 Feb 2013 4Computer Architecture@MNIT



Defining Performance
• What is important to whom?
• Computer system user

– Minimize elapsed time for program = time_end –
time_start

– Called response time

• Computer center manager
– Maximize completion rate = #jobs/second
– Called throughput

01 Feb 2013 5Computer Architecture@MNIT



Response Time vs. Throughput
• Is throughput = 1/av. response time?

– Only if NO overlap
– Otherwise, throughput > 1/av. response time
– E.g. a lunch buffet – assume 5 entrees
– Each person takes 2 minutes/entrée
– Throughput is 1 person every 2 minutes
– BUT time to fill up tray is 10 minutes
– Why and what would the throughput be otherwise?

• 5 people simultaneously filling tray (overlap)
• Without overlap, throughput = 1/10

01 Feb 2013 6Computer Architecture@MNIT



What is Performance for us?
• For computer architects

– CPU time = time spent running a program

• Intuitively, bigger should be faster, so:
– Performance = 1/X time, where X is response, CPU

execution, etc.

• Elapsed time = CPU time + I/O wait
• We will concentrate on CPU time

01 Feb 2013 7Computer Architecture@MNIT



Improve Performance
• Improve (a) response time or (b) throughput?

– Faster CPU
• Helps both (a) and (b)

– Add more CPUs
• Helps (b) and perhaps (a) due to less queueing

01 Feb 2013 8Computer Architecture@MNIT



Performance Comparison
• Machine A is n times faster than machine B iff

perf(A)/perf(B) = time(B)/time(A) = n
• Machine A is x% faster than machine B iff

– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

• E.g. time(A) = 10s, time(B) = 15s
– 15/10 = 1.5 => A is 1.5 times faster than B
– 15/10 = 1.5 => A is 50% faster than B

01 Feb 2013 9Computer Architecture@MNIT



Breaking Down Performance

• A program is broken into instructions
– H/W is aware of instructions, not programs

• At lower level, H/W breaks instructions into cycles
– Lower level state machines change state every cycle

• For example:
– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle = 1ns
– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

01 Feb 2013 10Computer Architecture@MNIT



Iron Law

Processor Performance = ---------------
Time

Program

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Instructions Cycles

Program Instruction
Time

Cycle

(code size)

= X X

(CPI) (cycle time)

01 Feb 2013 11Computer Architecture@MNIT



Iron Law
• Instructions/Program

– Instructions executed, not static code size
– Determined by algorithm, compiler, ISA

• Cycles/Instruction
– Determined by ISA and CPU organization
– Overlap among instructions reduces this term

• Time/cycle
– Determined by technology, organization, clever circuit

design

01 Feb 2013 12Computer Architecture@MNIT



Our Goal
• Minimize time which is the product, NOT

isolated terms
• Common error to miss terms while devising

optimizations
– e.g. ISA change to decrease instruction count
– BUT leads to CPU organization which makes clock

slower

• Bottom line: terms are inter-related

01 Feb 2013 13Computer Architecture@MNIT



Other Metrics
• MIPS and MFLOPS
• MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106)

• But MIPS has serious shortcomings

01 Feb 2013 14Computer Architecture@MNIT



Problems with MIPS
• E.g. without FP hardware, an FP op may take 50

single-cycle instructions
• With FP hardware, only one 2-cycle instruction

 Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program

decreases (why?)
– Total execution time

decreases
 BUT, MIPS gets worse!

50/50 => 2/1
50 => 1

50 => 2
50 MIPS => 2 MIPS

01 Feb 2013 15Computer Architecture@MNIT



Problems with MIPS
• Ignores program
• Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!

• When is MIPS ok?
– Same compiler, same ISA
– E.g. same binary running on AMD Phenom, Intel

Core i7
– Why? Instr/program is constant and can be

ignored

01 Feb 2013 16Computer Architecture@MNIT



Other Metrics
• MFLOPS = FP ops in program/(execution time x 106)

• Assuming FP ops independent of compiler and ISA
– Often safe for numeric codes: matrix size determines # of

FP ops/program
– However, not always safe:

• Missing instructions (e.g. FP divide)
• Optimizing compilers

• Relative MIPS and normalized MFLOPS
– Adds to confusion

01 Feb 2013 17Computer Architecture@MNIT



Rules
• Use ONLY Time
• Beware when reading, especially if details are

omitted
• Beware of Peak

– “Guaranteed not to exceed”

01 Feb 2013 18Computer Architecture@MNIT



Iron Law Example
• Machine A: clock 1ns, CPI 2.0, for program x
• Machine B: clock 2ns, CPI 1.2, for program x
• Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle
Time(A) = N x 2.0 x 1 = 2N
Time(B) = N x 1.2 x 2 = 2.4N
Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

• So, Machine A is 20% faster than Machine B for this
program

01 Feb 2013 19Computer Architecture@MNIT



Iron Law Example

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what is

CPI(A)?
Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

01 Feb 2013 20Computer Architecture@MNIT



Iron Law Example

• Keep CPI(A)=2.0 and CPI(B)=1.2
• For equal performance, if clock(B)=2ns,

what is clock(A)?

Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

01 Feb 2013 21Computer Architecture@MNIT



Which Programs
• Execution time of what program?
• Best case – your always run the same set of

programs
– Port them and time the whole workload

• In reality, use benchmarks
– Programs chosen to measure performance
– Predict performance of actual workload
– Saves effort and money
– Representative? Honest? Benchmarketing…

01 Feb 2013 22Computer Architecture@MNIT



How to Average

• One answer: for total execution time, how
much faster is B? 9.1x

Machine A Machine B
Program 1 1 10
Program 2 1000 100
Total 1001 110

01 Feb 2013 23Computer Architecture@MNIT



How to Average
• Another: arithmetic mean (same result)
• Arithmetic mean of times:
• AM(A) = 1001/2 = 500.5
• AM(B) = 110/2 = 55
• 500.5/55 = 9.1x
• Valid only if programs run equally often, so use

weighted arithmetic mean:

n
itime

n

i

1)(
1

×






∑

=

()
n

itimeiweight
n

i

1)()(
1

×








×∑
=

01 Feb 2013 24Computer Architecture@MNIT



Other Averages
• E.g., 30 mph for first 10 miles, then 90 mph

for next 10 miles, what is average speed?
• Average speed = (30+90)/2 WRONG
• Average speed = total distance / total time

= (20 / (10/30 + 10/90))
= 45 mph

01 Feb 2013 25Computer Architecture@MNIT



Harmonic Mean
• Harmonic mean of rates =

• Use HM if forced to start and end with rates (e.g.
reporting MIPS or MFLOPS)

• Why?
– Rate has time in denominator
– Mean should be proportional to inverse of sums of

time (not sum of inverses)
– See: J.E. Smith, “Characterizing computer performance

with a single number,” CACM Volume 31 , Issue 10
(October 1988), pp. 1202-1206.







∑

=

n

i nrate

n

1)(
1

01 Feb 2013 26Computer Architecture@MNIT



Dealing with Ratios

• If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10
Program 2 1000 100
Total 1001 110

Machine A Machine B
Program 1 1 10
Program 2 1 0.1

01 Feb 2013 27Computer Architecture@MNIT



Dealing with Ratios

• Average for machine A is 1, average for
machine B is 5.05

• If we take ratios with respect to machine B

• Can’t both be true!!!
• Don’t use arithmetic mean on ratios!

Machine A Machine B
Program 1 0.1 1
Program 2 10 1
Average 5.05 1

01 Feb 2013 28Computer Architecture@MNIT



Geometric Mean
• Use geometric mean for ratios
• Geometric mean of ratios =

• Independent of reference machine
• In the example, GM for machine a is 1, for

machine B is also 1
– Normalized with respect to either machine

n
n

i

iratio∏
=1

)(

01 Feb 2013 29Computer Architecture@MNIT



But…
• GM of ratios is not proportional to total time
• AM in example says machine B is 9.1 times faster
• GM says they are equal
• If we took total execution time, A and B are equal

only if
– Program 1 is run 100 times more often than program 2

• Generally, GM will mispredict for three or more
machines

01 Feb 2013 30Computer Architecture@MNIT



Summary
• Use AM for times
• Use HM if forced to use rates
• Use GM if forced to use ratios

• Best of all, use unnormalized numbers to
compute time

01 Feb 2013 31Computer Architecture@MNIT



Benchmarks: SPEC2000
• System Performance Evaluation Cooperative

– Formed in 80s to combat benchmarketing
– SPEC89, SPEC92, SPEC95, SPEC2000

• 12 integer and 14 floating-point programs
– Sun Ultra-5 300MHz reference machine has score

of 100
– Report GM of ratios to reference machine

01 Feb 2013 32Computer Architecture@MNIT



Benchmarks: SPEC CINT2000
Benchmark Description
164.gzip Compression
175.vpr FPGA place and route
176.gcc C compiler
181.mcf Combinatorial optimization
186.crafty Chess
197.parser Word processing, grammatical analysis
252.eon Visualization (ray tracing)
253.perlbmk PERL script execution
254.gap Group theory interpreter
255.vortex Object-oriented database
256.bzip2 Compression
300.twolf Place and route simulator

01 Feb 2013 33Computer Architecture@MNIT



Benchmarks: SPEC CFP2000
Benchmark Description
168.wupwise Physics/Quantum Chromodynamics
171.swim Shallow water modeling
172.mgrid Multi-grid solver: 3D potential field
173.applu Parabolic/elliptic PDE
177.mesa 3-D graphics library
178.galgel Computational Fluid Dynamics
179.art Image Recognition/Neural Networks
183.equake Seismic Wave Propagation Simulation
187.facerec Image processing: face recognition
188.ammp Computational chemistry
189.lucas Number theory/primality testing
191.fma3d Finite-element Crash Simulation
200.sixtrack High energy nuclear physics accelerator design
301.apsi Meteorology: Pollutant distribution

01 Feb 2013 34Computer Architecture@MNIT



Thank You

01 Feb 2013 Computer Architecture@MNIT 35

	Computer System�Performance�
	Performance and Cost
	Performance and Cost
	Performance of Computers
	Defining Performance
	Response Time vs. Throughput
	What is Performance for us?
	Improve Performance
	Performance Comparison
	Breaking Down Performance
	Iron Law
	Iron Law
	Our Goal
	Other Metrics
	Problems with MIPS
	Problems with MIPS
	Other Metrics
	Rules
	Iron Law Example
	Iron Law Example
	Iron Law Example
	Which Programs
	How to Average
	How to Average
	Other Averages
	Harmonic Mean
	Dealing with Ratios
	Dealing with Ratios
	Geometric Mean
	But…
	Summary
	Benchmarks: SPEC2000
	Benchmarks: SPEC CINT2000
	Benchmarks: SPEC CFP2000
	Thank You

