


Computer System
Instruction Set Architecture

Virendra Singh
Associate Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CP-226:Computer Architecture
Lecture 6 (08 Feb 2013)



ISA Classification
Type Adv Disadv
Reg-Reg Simple, fixed length encoding,

simple code generation, all instr.
Take same no. of cycles

Higher instruction count,
lower instruction density

Reg-Mem Data can be accessed without
separate load instruction first,
instruction format tend to be
easy to encode and yield good
density

Encoding register no and
memory address in each
instruction may restrict the
no. of registers.

Mem-Mem Most compact, doesn’t waste
registers for temporaries

Large variation in
instruction size, large
variation in in amount of
work (NOT USED TODAY)

08 Feb 2013 Computer Architecture@MNIT 2



Memory Address
• Interpreting memory address

– Big Endian (0 1 2 3)
– Little Endian (3 2 1 0)

• Instruction misalignment
• Addressing mode

08 Feb 2013 Computer Architecture@MNIT 3



Summary of Use of Addressing
Modes

08 Feb 2013 Computer Architecture@MNIT 4



Distribution of Displacement
Values

08 Feb 2013 Computer Architecture@MNIT 5



Frequency of Immediate
Operands

08 Feb 2013 Computer Architecture@MNIT 6



Types of Operations

• Arithmetic and Logic: AND, ADD
• Data Transfer: MOVE, LOAD, STORE
• Control BRANCH, JUMP, CALL
• System OS CALL, VM
• Floating Point ADDF, MULF, DIVF
• Decimal ADDD, CONVERT
• String MOVE, COMPARE
• Graphics (DE)COMPRESS

08 Feb 2013 Computer Architecture@MNIT 7



Distribution of Data Accesses
by Size

08 Feb 2013 Computer Architecture@MNIT 8



80x86 Instruction Frequency
(SPECint92)

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%

9

9 call 1%
10 return 1%

Total 96%

08 Feb 2013 Computer Architecture@MNIT 9



Relative Frequency of
Control Instructions

08 Feb 2013 Computer Architecture@MNIT 10



Control instructions (contd.)
• Addressing modes

– PC-relative addressing (independent of program load &
displacements are close by)
• Requires displacement (how many bits?)
• Determined via empirical study. [8-16 works!]

– For procedure returns/indirect jumps/kernel traps, target
may not be known at compile time.
• Jump based on contents of register
• Useful for switch/(virtual) functions/function ptrs/dynamically

linked libraries etc.

08 Feb 2013 Computer Architecture@MNIT 11



Branch Distances (in terms of
number of instructions)

08 Feb 2013 Computer Architecture@MNIT 12



Frequency of Different Types of
Compares in Conditional Branches

08 Feb 2013 Computer Architecture@MNIT 13



Encoding an Instruction set
• desire to have as many registers and

addressing mode as possible
• the impact of size of register and addressing

mode fields on the average instruction size
and hence on the average program size

• a desire to have instruction encode into
lengths that will be easy to handle in the
implementation

08 Feb 2013 Computer Architecture@MNIT 14



Three choice for encoding the
instruction set

08 Feb 2013 Computer Architecture@MNIT 15



RISC Design

08 Feb 2013 Computer Architecture@MNIT 16



RISC Architecture
• Simple instructions
• Fixed Instruction Encoding
• Limited Addressing Mode
• Instruction count increases
• Simple controller
• Load/Store architecture
• Limited addressing modes

08 Feb 2013 Computer Architecture@MNIT 17

08 Feb 2013 Computer Architecture@MNIT 18

Arithmetic Instructions
Design Principle: simplicity favors regularity.
Of course this complicates some things...

C code: a = b + c + d;

DLX code: add a, b, c
add a, a, d

Operands must be registers
 32 registers provided
 Each register contains 32 bits

08 Feb 2013 Computer Architecture@MNIT 19

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers
• 32 registers provided

• Compiler associates variables with registers.
• What about programs with lots of variables? Must use

memory.

08 Feb 2013 Computer Architecture@MNIT 20

Memory Organization
 Viewed as a large, single-dimension array, with an address.
 A memory address is an index into the array.
 "Byte addressing" means that the index points to a byte of

memory.

8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data
8 bits of data

. . .

. . .

0
1
2
3
4
5
6
.
.

08 Feb 2013 Computer Architecture@MNIT 21

Memory Organization
 Bytes are nice, but most data items use larger "words"
 For DLX, a word is 32 bits or 4 bytes.

 232 bytes with byte addresses from 0 to 232 – 1
 230 words with byte addresses 0, 4, 8, ... 232 – 4
 Words are aligned

i.e., what are the least 2 significant bits of a word address?

...

Registers hold 32 bits of data

32 bits of data
32 bits of data
32 bits of data
32 bits of data

…
…

0
4
8

12
.
.

08 Feb 2013 Computer Architecture@MNIT 22

Instructions
 Load and store instructions
 Example:

C code: A[12] = h + A[8];

DLX code: lw R1, 32(R3) #addr of A in reg R3
add R1, R2, R1 #h in reg R2
sw R1, 48(R3)

 Can refer to registers by name (e.g., R2, R1) instead of number
 Store word has destination last
 Remember arithmetic operands are registers, not memory!

Can’t write: add 48(R3), R2, 32(R3)

08 Feb 2013 Computer Architecture@MNIT 23

Memory Example

• Can we figure out the code?

 Initially, k is in reg 5; addr of v is in reg 4; return addr is
in reg 31

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
sll R2, R5, 2
add R2, R4, R2
lw R15, 0(R2)
lw R16, 4(R2)
sw R16, 0(R2)
sw R15, 4(R2)
jr R31

2004 © Morgan Kaufman Publishers

08 Feb 2013 Computer Architecture@MNIT 24

What Happens?

• When the program reaches swap statement:
– Jump to swap routine

• Registers 4 and 5 contain the arguments
• Register 31 contains the return address

– Swap two words in memory
– Jump back to return address to continue rest of the program

.

.
swap
.
.
.

return address

08 Feb 2013 Computer Architecture@MNIT 25

Memory and Registers

Word 0
Word 1
Word 2

v[0] (Word n)

0
4
8

12
.

4n
.
.
.

4n+4k
.

v[1] (Word n+1)

Register 0

Register 1

Register 2

Register 3

Register 4

Register 31

Register 5

v[k] (Word n+k)

4n

k

Memory

byte addr.

jump addr.v[k+1] (Word n+k+1)

.

.

08 Feb 2013 Computer Architecture@MNIT 26

 Instructions, like registers and words of data, are also
32 bits lon
Example: add R1, R2, R3

 Instruction Format:
000000 00001 00010 00011 00000 100000

op rs1 rs2 rd funct

 Can you guess what the field names stand for?

Machine Language

2004 © Morgan Kaufman Publishers

Presenter
Presentation Notes
Board work: Binary Numbers

08 Feb 2013 Computer Architecture@MNIT 27

 Decision making instructions
 alter the control flow,
 i.e., change the "next" instruction to be execute

 DLX conditional branch instructions:
bnez R1, Label
beqz R1, Label

 Example: if (i/=0) h = 10 + j;

bnez R1, Label
add R3, R2, 10

Label:

Control

08 Feb 2013 Computer Architecture@MNIT 28

• DLX unconditional branch instructions:
j label

• Example:
if (i!=0) beqz R4, Lab1

h=10+j; add R3, R5, 10
else j Lab2

h=j-32; Lab1: sub R3, $s5, 32
Lab2: ...

• Can you build a simple for loop?

Control

08 Feb 2013 Computer Architecture@MNIT 29

Four Ways to Jump

 j addr # jump to addr
 jr reg # jump to address in register reg
 jal addr # set R31=PC+4 and go to addr

(jump and link)
 jalr reg # set R31=PC+4 and go to

address in register reg

08 Feb 2013 Computer Architecture@MNIT 30

 simple instructions, all 32 bits wide
 very structured, no unnecessary baggage
 only three instruction formats

 rely on compiler to achieve performance

op rs1 rs2 rd funct

op rs1 rd 16 bit address

op 26 bit address

R

I

J

Overview of DLX

2004 © Morgan Kaufman Publishers

08 Feb 2013 Computer Architecture@MNIT 31

• Instructions:

bnez R4, R5, Label Next instruction is at Label

if R4 ≠ R5

beqz R4, R5, Label Next instruction is at Label

if R4 = R5

j Label Next instruction is at Label

• Formats: op rs rd 16 bit rel. address

op 26 bit absolute addressI

J

Addresses in Branches and Jumps

2004 © Morgan Kaufman Publishers

08 Feb 2013 Computer Architecture@MNIT 32

• Instructions:
bnez R4,Label Next instruction is at Label if R4 ≠ 0
beqz R4,Label Next instruction is at Label if R4 = 0

• Formats:

• Relative addressing 226 = 64 Mwords
– with respect to PC (program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MBytes (maximum jump 64 Mwords)

Addresses in Branches

2004 © Morgan Kaufman Publishers

op rs rd 16 bit address

op 26 bit address

08 Feb 2013 Computer Architecture@MNIT 33

 Instruction complexity is only one variable
 lower instruction count vs. higher CPI / lower clock rate –

we will see performance measures later
 Design Principles:
 simplicity favors regularity
 smaller is faster
 good design demands compromise
make the common case fast

 Instruction set architecture
 a very important abstraction indeed!

Summary

08 Feb 2013 Computer Architecture@MNIT 34

Instruction Set

Opcode Rs1 funcRs2 Rd
0 5 1510 20 25 31

Register-Register Instructions

Arithmetic and Logical Instruction
• ADD Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1] + Reg[Rs2]

• SUB Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1] - Reg[Rs2]

• AND Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1] and Reg[Rs2]

• OR Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1] or Reg[Rs2]

• XOR Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1] xor Reg[Rs2]

•SUB Rd, Rs1, Rs2 Regs[Rd] <= Reg[Rs1]-Reg[Rs2]

08 Feb 2013 Computer Architecture@MNIT 35

DLX Instruction Set

ADD Rd, Rs1, Rs2 Rd ← Rs1 + Rs2
(overflow – exception)

R 000_000
000_100

SUB Rd, Rs1, Rs2 Rd ← Rs1 - Rs2
(overflow – exception)

R 000_000
000_110

AND Rd, Rs1, Rs2 Rd ← Rs1 and Rs2 R 000_000/ 001_000

OR Rd, Rs1, Rs2 Rd ← Rs1 or Rs2 R 000_000/ 001_001

XOR Rd, Rs1, Rs2 Rd ← Rs1 xor Rs2 R 000_000/ 001_010

SLL Rd, Rs1, Rs2 Rd ← Rs1 << Rs2 (logical)
(5 lsb of Rs2 are significant)

R 000_000
001_100

SRL Rd, Rs1, Rs2 Rd ← Rs1 >> Rs2 (logical)
(5 lsb of Rs2 are significant)

R 000_000
001_110

SRA Rd, Rs1, Rs2 Rd ← Rs1 >> Rs2 (arithmetic)
(5 lsb of Rs2 are significant)

R 000_000
001_111

08 Feb 2013 Computer Architecture@MNIT 36

DLX Instruction Set

ADDI Rd, Rs1, Imm Rd ← Rs1 + Imm (sign extended)
(overflow – exception)

I 010_100

SUBI Rd, Rs1, Imm Rd ← Rs1 – Imm (sign extended)
(overflow – exception)

I 010_110

ANDI Rd, Rs1, Imm Rd ← Rs1 and Imm (zero extended) I 011_000

ORI Rd, Rs1, Imm Rd ← Rs1 or Imm(zero extended) I 011_001

XORI Rd, Rs1, Imm Rd ← Rs1 xor Imm(zero extended) I 011_010

SLLI Rd, Rs1, Imm Rd ← Rs1 << Imm (logical)
(5 lsb of Imm are significant)

I 011_100

SRLI Rd, Rs1, Imm Rd ← Rs1 >> Imm (logical)
(5 lsb of Imm are significant)

I 011_110

SRAI Rd, Rs1, Imm Rd ← Rs1 >> Imm (arithmetic)
(5 lsb of Imm are significant)

I 011_111

08 Feb 2013 Computer Architecture@MNIT 37

DLX Instruction Set

LHI Rd, Imm Rd(0:15) ← Imm
Rd(16:32) ← hex0000
(Imm: 16 bit immediate)

I 011_011

NOP Do nothing R 000_000
000_000

08 Feb 2013 Computer Architecture@MNIT 38

DLX Instruction Set

SEQ Rd, Rs1, Rs2 Rs1 = Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
010_000

SNE Rd, Rs1, Rs2 Rs1 /= Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
010_010

SLT Rd, Rs1, Rs2 Rs1 < Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
010_100

SLE Rd, Rs1, Rs2 Rs1 <= Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
010_110

SGT Rd, Rs1, Rs2 Rs1 > Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
011_000

SGE Rd, Rs1, Rs2 Rs1 >= Rs2: Rd ← hex0000_0001
else: Rd ← hex0000_0000

R 000_000
011_010

08 Feb 2013 Computer Architecture@MNIT 39

DLX Instruction Set

SEQI Rd, Rs1, Imm Rs1 = Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000
(Imm: Sign extended 16 bit immediate)

I 100_000

SNEI Rd, Rs1, Imm Rs1 /= Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000

I 100_010

SLTI Rd, Rs1, Imm Rs1 < Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000

I 100_100

SLEI Rd, Rs1, Imm Rs1 <= Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000

I 100_110

SGTI Rd, Rs1, Imm Rs1 > Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000

I 101_000

SGEI Rd, Rs1, Imm Rs1 >= Imm : Rd ← hex0000_0001
else: Rd ← hex0000_0000

I 101_010

08 Feb 2013 Computer Architecture@MNIT 40

DLX Instruction Set
BEQZ Rs, Label Rs = 0: PC ← PC+4+Label

Rs /= 0: PC ← PC+4
(Label: Sign extended16 bit immediate)

I 010_000

BNEZ Rs, Label Rs /= 0: PC ← PC+4+Label
Rs = 0: PC ← PC+4

I 010_001

J Label PC ← PC + 4 + sign_extd(imm26) J 001_100

JAL Label R31 ← PC + 4
PC ← PC+ 4 + sign_extd(imm26)

J 001_100

JAL Label R31 ← PC + 4
PC ← PC+ 4 + sign_extd(imm26)

J 001_101

JR Rs PC ← Rs I 001_110

JALR Rs R31 ← PC + 4
PC ← Rs

I 001_111

08 Feb 2013 Computer Architecture@MNIT 41

DLX Instruction Set

LW Rd, Rs2 (Rs1) Rd ← M(Rs1 + Rs2)
(word aligned address)

R 000_000
100_000

SW Rs2(Rs1), Rd M(Rs1 + Rs2) ← Rd R 000_000
101_000

LH Rd, Rs2 (Rs1) Rd (16:31)← M(Rs1 + Rs2)
(Rd sign extended to 32 bit)

R 000_000
100_001

SH Rs2(Rs1), Rd M(Rs1 + Rs2) ← Rd(16:31) R 000_000
101_001

LB Rd, Rs2 (Rs1) Rd (24:31)← M(Rs1 + Rs2)
(Rd sign extended to 32 bit)

R 000_000
101_010

SB Rs2(Rs1), Rd M(Rs1 + Rs2) ← Rd(24:31) R 000_000
101_010

08 Feb 2013 Computer Architecture@MNIT 42

DLX Instruction Set

LWI Rd, Imm (Rs) Rd ← M(Rs + Imm)
(Imm: sign extended 16 bit)
(word aligned address)

I 000_100

SWI Imm(Rs), Rd M(Rs + Imm) ← Rd I 001_000

LHI Rd, Imm (Rs) Rd (16:31)← M(Rs + Imm)
(Rd sign extended to 32 bit)

I 000_101

SHI Imm(Rs), Rd M(Rs1 + Rs2) ← Rd(16:31) I 001_001

LBI Rd, Imm (Rs) Rd (24:31)← M(Rs + Imm)
(Rd sign extended to 32 bit)

I 000_110

SBI Imm(Rs), Rd M(Rs + Imm) ← Rd(24:31) I 001_010



Thank You

08 Feb 2013 Computer Architecture@MNIT 43

	Computer System�Instruction Set Architecture�
	ISA Classification
	Memory Address
	Summary of Use of Addressing Modes
	Distribution of Displacement Values
	Frequency of Immediate Operands
	Types of Operations
	Slide Number 8
	80x86 Instruction Frequency�(SPECint92)
	Relative Frequency of �Control Instructions
	Control instructions (contd.)
	Branch Distances (in terms of number of instructions)
	Frequency of Different Types of Compares in Conditional Branches
	Encoding an Instruction set
	Three choice for encoding the instruction set
	RISC Design
	RISC Architecture
	Arithmetic Instructions
	Registers vs. Memory
	Memory Organization
	Memory Organization
	Instructions
	Memory Example
	What Happens?
	Memory and Registers
	Machine Language
	Control
	Control
	Four Ways to Jump
	Overview of DLX
	Addresses in Branches and Jumps
	Addresses in Branches
	Summary
	Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	DLX Instruction Set
	Thank You

