Computer Architecture
Instruction Set Architecture

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

CS 683: Advanced Comyutzr Architecture
(T Lecture 2 (26 July 2013) CADSL

What Are the Components of an ISA?

e Sometimes known as The Programmer’s Model of the
machine

e Storage cells
» General and special purpose registers in the CPU
» Many general purpose cells of same size in memory
» Storage associated with |/O devices

e The machine instruction set

» The instruction set is the entire repertoire of machine
operations

» Makes use of storage cells, formats, and results of the fetch/
execute cycle

> i.e., register transfers

26 July 2013 CS683@IITB 2 CADSL

What Are the Components of an
ISA?

e The instruction format
» Size and meaning of fields within the instruction

e The nature of the fetch-execute cycle

» Things that are done before the operation code
is known

26 July 2013 CS683@IITB 3 CADSL

Instruction

e C Statement
f = (g+h) — (i+])
» Assembly instructions
add t0, g, h
add t1, |, j
sub f, t0, t1

e Opcode/mnemonic, operand , source/
destination

26 July 2013 CS683@IITB 4 CADSL

Why not Bigger Instructions?

Why not “f = (g+h) — (i+j)” as one instruction?

Church’s thesis: A very primitive computer can
compute anything that a fancy computer can
compute — you need only logical functions, read and
write to memory, and data dependent decisions

Therefore, ISA selection is for practical reasons
— Performance and cost not computability
Regularity tends to improve both

— E.g, H/W to handle arbitrary number of operands
is complex and slow, and UNNECESSARY

26 July 2013 CS683@IITB 5 CADSL

What Must an Instruction
Specify?(l)

Data Flow
-

e Which operation to perform add r0O, r1, r3
—Ans: Op code: add, load, branch, etc.

e Where to find the operands: add rO, rl, r3

—In CPU registers, memory cells, /O locations, or part
of instruction

e Place to store result addr0, r1, r3

—Again CPU register or memory cell

26 July 2013 CS683@IITB 6 CADSL

What Must an Instruction Specify?(ll)

e Location of next instruction add rO, r1, r3
br endloop

— Almost always memory cell pointed to by program
counter—PC
e Sometimes there is no operand, or no result,
or no next instruction. Can you think of
examples?

26 July 2013 CS683@IITB 7 CADSL

Instructions Can Be Divided into 3 Classes (I)

e Data movement instructions

— Move data from a memory location or register to another
memory location or register without changing its form

— Load—source is memory and destination is register
— Store—source is register and destination is memory

e Arithmetic and logic (ALU) instructions

— Change the form of one or more operands to produce a
result stored in another location

— Add, Sub, Shift, etc.

e Branch instructions (control flow instructions)

— Alter the normal flow of control from executing the next
instruction in sequence

— Br Loc, Brz Loc2,—unconditional or conditional branches

26 July 2013 CS683@IITB 8 CADSL

|ISA Classification

e Type of internal storage in a processor is the
most basic differentiator

e Stack Architecture
e Accumulator Architecture
e General Purpose Register Architecture

26 July 2013 CS683@IITB 9 CADSL

Processor

TOS

A I,

Memo

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/
load-store
Operand locations for four instruction set architecture classes. The arrows indicate whether the operand is an input or the result
of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades indicate inputs, and the dark shade
indicates the result. In (a), a Top Of Stack register (TOS) points to the top input operand, which is combined with the operand
below. The first operand is removed from the stack, the result takes the place of the second operand, and TOS is updated to point to
the result. All operands are implicit. In (b), the Accumulator is both an implicit input operand and a result. In (c), one input operand
is a register, one is in memory, and the result goes to a register. All operands are registers in (d) and, like the stack architecture, can
be transferred to memory only via separate instructions: push or pop for (a) and load or store for (d).

Source: CA: A quantitative approach

26 July 2013 CS683@IITB 10 CADSL

|ISA Classification

H Max. no.of Typeof Examples
Memory operands architecture
Address allowed

0 3 Load-Store Alpha, ARM,
MIPS,
PowerPC

1 2 Reg-Mem IBM360, Intel
x86, 68000

Mem-Mem VAX
Mem-Mem VAX

26 July 2013 CS683@IITB 11 CADSL

|ISA Classification

Type

Adv

Reg-Reg Simple, fixed length encoding,

Reg-
Mem

Mem-
Mem

simple code generation, all
instr. Take same no. of cycles

Data can be accessed without
separate load instruction first,
instruction format tend to be
easy to encode and yield good
density

Most compact, doesn’t waste
registers for temporaries

Disadv

Higher instruction count,
lower instruction density

Encoding register no and
memory address in each
instruction may restrict the
no. of registers.

Large variation in
instruction size, large
variation in in amount of
work (NOT USED TODAY)

26 July 2013 CS683@IITB

12 CADSL

Memory Address

e |Interpreting memory address
— Big Endian
— Little Endian

e |Instruction misalignment

e Addressing mode

26 July 2013 CS683@IITB 13 CADSL

Addressing Modes

Register
Immediate
Register Indirect
Displacement
Indexed

Direct Absolute
Memory Indirect
Auto Increment
Auto decrement

26 July 2013 CSe83@IITB

14

CADSL

Use of Addressing Modes

TeX 1%

Memory indirect spice h 6%
gcc 1%
TeX 0%

Scaled spice 16%

gcc 6%
TeX 24%

Register indirect spice 3%
TeX 43%

e 2 NCee—
gcc 39°/O
TeX 32%
Displacement spice 55%
gcc 40%
0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 15 CADSL

Distribution of Displacement
Values

400/° ..

35% R e e S
Integer average
300/° ...

D% fren e S

Percentage of
displacement = 20% [\ - |

Floating-point average
1 50/o ..
1 0!:)/° ...

e T s e e s

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bits of displacement

1]

0%
0

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 16 CADSL

Frequency of Immediate
Operands

O Floating-point average
B Integer average

Loads 939,
ALU operations

25%

All instructions 21%

0% 5% 10% 15% 20% 25% 30%

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 17 CADSL

Types of Operations

v' Arithmetic and Logic: AND, ADD

v Data Transfer: MOVE, LOAD, STORE
v’ Control BRANCH, JUMP, CALL
v’ System OS CALL, VM

v’ Floating Point ADDF, MULF, DIVF

v’ Decimal ADDD, CONVERT

v String MOVE, COMPARE

v’ Graphics (DE)COMPRESS

26 July 2013 CS683@IITB 18 CADSL

Distribution of Data Accesses
by Size

Double word | 70°%

(64 bits) 59%
Word 29%
(32 bits) 26%

Half word | go4
(16 bits) 5% M Floating-point average
F [Integer average
Byte | 1%
(8 bits) 10%

0% 20% 40% 60% 80%

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 19 CADSL

80x86 Instruction Frequency

(SPECIint92)
Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%
Total 96%

26 July 2013 CS683@IITB 20 CADSL

Relative Frequency of
Control Instructions

B Floating-point average
B Integer average

8%

Call/return

Jump

82%
Conditional branch 75%

0% 25% 50% 75% 100%
Frequency of branch instructions

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 21 CADSL

Control instructions (contd.)

e Addressing modes

» PC-relative addressing (independent of program
load & displacements are close by)
e Requires displacement (how many bits?)
e Determined via empirical study. [8-16 works!]

» For procedure returns/indirect jumps/kernel
traps, target may not be known at compile time.
e Jump based on contents of register

e Useful for switch/(virtual) functions/function ptrs/
dynamically linked libraries etc.

26 July 2013 CS683@IITB 22 CADSL

Branch Distances (in terms of
number of instructions)

300/° S S e R S A e s S S A R S S A R S S S R A S S S S S e S S A S A S S .

2 50/0 b IO T A I S DR I A ~ KT O o A SO R S A O A R O e T i R A T O DD O L OO DD S AT]

200/° e e A A A O S S e S I3 A B G e T N N3 A A S A T O B 3 T B 3 B G B O B3 3 e T (A e e T B B S A 3 S e N 3 Gy B R A B A A S D S S s B A e
Integer

average
150/0 B conrnotmaoTenns g ...

Percentage
of distance
Floating-point average

1 00/0 A A] R e BN S S b RS TS e o AR 1 o1 Y T o4 a1 1 Y T 0 R a7 A A AT 8 02 1 RS T WY YT A e

50/° B A A A o S S A S A B Lo 8 S B S S S s A e S) Lo A S A S O Y A S B Sy S S B T S S I S I A e AT S A S A B S e BB A

1 1 1 1 1 1 1 1 1 h“__~A-
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement

0%

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 23 CADSL

Frequency of Different Types of
Compares in Conditional Branches

Not equal .
[Floating-point average

B Integer average

16%

Equal

18%

0%
Greater than or equal

0%
Greater than 0%

44%
Less than or equal

34%
35%

Less than

1

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

© 2003 Elsevier Science (USA). All rights reserved.

26 July 2013 CS683@IITB 24 CADSL

Encoding an Instruction set

e desire to have as many registers and
addressing mode as possible

e the impact of size of register and addressing
mode fields on the average instruction size
and hence on the average program size

e g desire to have instruction encode into
lengths that will be easy to handle in the
implementation

26 July 2013 CS683@IITB 25 CADSL

Three choice for encoding the
Instruction set

Operation and Address Address e « = | Address Address
no. of operands | specifier 1 field 1 specifier field
(a) Variable (e.g., VAX, Intel 80x86)
Operation Address Address Address
field 1 field 2 field 3
(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)
Operation Address Address
specifier field
Operation Address Address Address
specifier 1 specifier 2 field
Operation Address Address Address
specifier field 1 field 2
(c) Hybrid (e.g., IBM 360/70, MIPS16, Thumb, TI TMS320C54x)
© 2003 Elsevier Science (USA). All rights reserved.
26 July 2013 CS683@IITB 26 CADSL

RISC Design

26 July 2013 CS683@IITB 27 CADSL

RISC Architecture

Simple instructions
-ixed Instruction Encoding
Limited Addressing Mode

nstruction count increases
Simple controller
Load/Store architecture
Limited addressing modes

26 July 2013 CS683@IITB 28

CADSL

Arithmetic Instructions

» Design Principle: simplicity favors regularity.
» Of course this complicates some things...

C code: a=b+c+d;

DLX code: add a, b, c
add a, a, d

» Operands must be registers
» 32 registers provided
» Each register contains 32 bits

26 July 2013 CS683@IITB 29 CADSL

Instructions

¢ Load and store instructions
s Example:

C code: A[12] = h + A[8];

DLX code: Iw R1, 32(R3) #addr of AinregR3

add R1, R2, R1#h inreg R2
sw R1, 48(R3)

s Can refer to registers by name (e.g., R2, R1) instead of number
+* Store word has destination last
** Remember arithmetic operands are registers, not memory!

Can’ twrite: add 48(R3), R2, 32(R3)

26 July 2013 CS683@IITB 30 CADSL

Memory Example

e Can we figure out the code?

swap:

swap(int v[], int k); sll R2, R5, 2

{int temp; add R2, R4, R2
temp = v[k] - lw R15, 0(R2)
v[k] = v[k+1]; lw R16, 4 (R2)
v[k+1] = temp; sw R16, 0 (R2)

} sw R15, 4 (R2)

Jjr R31

» Initially, k is in reg 5; addr of v is in reg 4; return addr is
inreg 31

2004 © Morgan Kaufman Publishers

26 July 2013 CS683@IITB 31 CADSL

Control

Decision making instructions

> alter the control flow,

» i.e., change the "next" instruction to be execute
DLX conditional branch instructions:

bnez R1l, Label
begz R1l, Label

Example: if (i/=0) h = 10 + j;
bnez R1l, Label

add R3, R2, 10
Label:

26 July 2013 CS683@IITB 32 CADSL

Control

e DLX unconditional branch instructions:

j label
e Example:
if (i!1=0) beqz R4, Labl
h=10+j add R3, R5, 10
else j Lab2
h=j-32 Labl: sub R3, Ss5, 32

Lab2:

e Can you build a simple for loop?

26 July 2013 CS683@IITB 33 CADSL

Four Ways to Jump

] addr # jump to addr
*jr reg # jump to address in register reg
< jal addr # set R31=PC+4 and go to addr

(jump and link)

< jalr reg # set R31=PC+4 and go to
address in register reg

26 July 2013 CS683@IITB 34 CADSL

Overview of DLX

< simple instructions, all 32 bits wide
< very structured, no unnecessary baggage
< only three instruction formats

R op rsl rs2 rd funct
T op rsl rd 16 bit address
J op 26 bit address

< rely on compiler to achieve performance

2004 O MoraanKaufman Publicshers
)

26 July 2013 CS683@IITB 35 CADSL

Summary

< Instruction complexity is only one variable
» lower instruction count vs. higher CPI / lower clock rate

Design Principles:
» simplicity favors regularity
» smaller is faster
» good design demands compromise
» make the common case fast
% Instruction set architecture
» a very important abstraction indeed!

26 July 2013 CS683@IITB 36 CADSL

DLX Instruction Set

ADD Rd, Rs1, Rs2 Rd < Rsl + Rs2 R | 000_000
(overflow — exception) 000_100
SUB Rd, Rs1, Rs2 Rd < Rsl - Rs2 R |000_000
(overflow — exception) 000_110
AND Rd, Rs1, Rs2 Rd < Rs1 and Rs2 R |000_000/ 001_000
OR Rd, Rs1, Rs2 Rd < Rs1 or Rs2 R | 000_000/ 001_001
XOR Rd, Rs1, Rs2 Rd < Rs1 xor Rs2 R | 000_000/ 001_010
SLL Rd, Rs1, Rs2 Rd < Rsl << Rs2 (logical) R | 000_000
(5 Isb of Rs2 are significant) 001_100
SRL Rd, Rs1, Rs2 Rd < Rsl >> Rs2 (logical) R | 000_000
(5 Isb of Rs2 are significant) 001_110
SRA Rd, Rs1, Rs2 Rd < Rsl >> Rs2 (arithmetic) R | 000_000
(5 Isb of Rs2 are significant) 001_111

26 July 2013

CS683@IITB

7 CADSL

DLX Instruction Set

ADDI Rd, Rs1, Imm Rd < Rsl + Imm (sign extended) I 010_100
(overflow — exception)

SUBI Rd, Rs1, Imm Rd < Rsl — Imm (sign extended) I 010_110
(overflow — exception)

ANDI Rd, Rs1, Imm Rd < Rs1 and Imm (zero extended) I 011_000

ORI Rd, Rs1, Imm Rd < Rsl or Imm(zero extended) I 011_001

XORI Rd, Rs1, Imm Rd < Rs1 xor Imm(zero extended) I 011_010

SLLI Rd, Rs1, Imm Rd < Rsl << Imm (logical) I 011_100
(5 Isb of Imm are significant)

SRLI Rd, Rs1, Imm | Rd < Rsl >> Imm (logical) I 011_110
(5 Isb of Imm are significant)

SRAI Rd, Rs1, Imm |Rd < Rsl >> Imm (arithmetic) I 011_111
(5 Isb of Imm are significant)

26 July 2013 CS683@IITB s CADSL

DLX Instruction Set

LHI Rd, Imm Rd(0:15) < Imm I 011_011
Rd(16:32) < hex0000
(Imm: 16 bit immediate)

NOP Do nothing R 000_000
000_000

26 July 2013 CS683@IITB 39 CADSL

DLX Instruction Set

SEQ Rd, Rs1, Rs2 Rs1 = Rs2: Rd < hex0000_0001 R 000_000
else: Rd < hex0000_0000 010_000
SNE Rd, Rs1, Rs2 Rs1 /= Rs2: Rd < hex0000_0001 R 000_000
else: Rd < hex0000_0000 010_010
SLT Rd, Rs1, Rs2 Rsl < Rs2: Rd < hex0000_0001 R 000_000
else: Rd < hex0000_0000 010_100
SLE Rd, Rs1, Rs2 Rsl <= Rs2: Rd < hex0000_0001 R 000_000
else: Rd < hex0000_0000 010_110
SGT Rd, Rs1, Rs2 Rsl > Rs2: Rd < hex0000_0001 R 000_000
else: Rd < hex0000_0000 011_000
SGE Rd, Rs1, Rs2 Rsl >= Rs2: Rd < hex0000_0001 |R 000_000
else: Rd < hex0000_0000 011_010

26 July 2013 CS683@IITB s CADSL

DLX Instruction Set

SEQI Rd, Rs1, Imm Rsl = Imm : Rd < hex0000_0001 I 100_000
else: Rd < hex0000_0000
(Imm: Sign extended 16 bit immediate)

SNEI Rd, Rs1, Imm Rsl /= Imm : Rd < hex0000_0001 I 100_010
else: Rd < hex0000_0000

SLTI Rd, Rs1, Imm Rsl < Imm : Rd < hex0000_0001 I 100_100
else: Rd < hex0000_0000

SLEI Rd, Rs1, Imm Rsl <= Imm : Rd < hex0000_0001 I 100_110
else: Rd < hex0000_0000

SGTI Rd, Rs1, Imm Rsl > Imm : Rd < hex0000_0001 I 101_000
else: Rd < hex0000_0000

SGEI Rd, Rs1, Imm Rsl >=Imm : Rd < hex0000_0001 I 101_010
else: Rd < hex0000_0000

26 July 2013 CS683@IITB 422 CADSL

DLX Instruction Set

BEQZ Rs, Label Rs = 0: PC < PC+4+Label I 010_000
Rs /= 0: PC — PC+4
(Label: Sign extended16 bit immediate)

BNEZ Rs, Label Rs /= 0: PC < PC+4+Label I 010 001
Rs =0: PC< PC+4

J Label PC < PC + 4 + sign_extd(imm26) J 001_100

JAL Label R31 < PC+4 J 001_100
PC — PC+ 4 + sign_extd(imm26)

JAL Label R31 < PC+4 J 001_101
PC — PC+ 4 + sign_extd(imm26)

JR Rs PC < Rs I 001_110

JALR Rs R31 < PC+4 I 001_111
PC < Rs

CSe83@!ITB GADSL

DLX Instruction Set

LW Rd, Rs2 (Rs1) Rd <~ M(Rsl1 + Rs2) R 000_000
(word aligned address) 100_000

SW Rs2(Rs1), Rd M(Rsl1 + Rs2) < Rd R 000_000
101_000

LH Rd, Rs2 (Rs1) Rd (16:31)<— M(Rs1 + Rs2) R 000_000
(Rd sign extended to 32 bit) 100_001

SH Rs2(Rs1), Rd M(Rs1 + Rs2) < Rd(16:31) R 000_000
101_001

LB Rd, Rs2 (Rs1) Rd (24:31)<— M(Rsl1 + Rs2) R 000_000
(Rd sign extended to 32 bit) 101_010

SB Rs2(Rs1), Rd M(Rs1 + Rs2) < Rd(24:31) R 000_000
101_010

CSe83@!ITB GADSL

DLX Instruction Set

LWI Rd, Imm (RS) Rd < M(Rs + Imm) I 000_100
(Imm: sign extended 16 bit)
(word aligned address)

SWI Imm(Rs), Rd M(Rs + Imm) < Rd I 001_000

LHI Rd, Imm (Rs) Rd (16:31)<— M(Rs + Imm) I 000_101
(Rd sign extended to 32 bit)

SHI Imm(Rs), Rd M(Rsl1 + Rs2) < Rd(16:31) I 001_001

LBI Rd, Imm (RSs) Rd (24:31)<— M(Rs + Imm) I 000_110
(Rd sign extended to 32 bit)

SBI Imm(Rs), Rd M(Rs + Imm) < Rd(24:31) I 001_010

26 July 2013 CS683@IITB 44 CADSL

Thank You

26 July 2013 CS683@IITB 45 CADSL

