Computer Architecture
An Introduction

Virendra Singh

Associate Professor
Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering

Indian Institute of Technology Bombay
http://www.ee.iitb.ac.in/~viren/
E-mail: viren@ee.iitb.ac.in

CS 683: Advanced Comjoumf Architecture
(N Lecture 5 (09 Aug 2013) CADSL

Advantages of Pipeline

e One instruction is completed each cycle; CPI = 1,
neglecting the initial pipeline latency of n cycles.

— Pipeline latency is defined as the number of stages in the
pipeline, or
— The number of clock cycles after which the first instruction
is completed.
e The clock cycle time is about four times shorter than
that of single-cycle datapath and about the same as
that of multicycle datapath.

e So, pipelined execution is faster, but . ..

09 Aug 2013 CS683@IITB 2 CADSL

Pipeline Hazards

e Definition: Hazard in a pipeline is a situation in
which the next instruction cannot complete
execution one clock cycle after completion of
the present instruction.

e Three types of hazards:
— Structural hazard (resource conflict)

— Data hazard
— Control hazard

09 Aug 2013 CS683@IITB 3 CADSL

Structural Hazard

e Two instructions cannot execute due to a
resource conflict.

e Example: Consider a computer with a
common data and instruction memory. The
fourth cycle of a Iw instruction requires
memory access (memory read) and at the
same time the first cycle of the fourth
instruction requires instruction fetch (memory
read). This will cause a memory resource

CS683@IITB 4 CADSL

Example of Structural Hazard

time

»
»

CC2 CC3 CC4 CC5

CC1

$10, 20($1)

3

»

$11, $2, $3

o)
=
2]

»

suoljonJisul weuboud

gdM/INJIN g NFIN/XST

< =
e &
™ <
& N
= o %)
20 &H &
(L
©
c =
ow
m.mM
m.ma 3
S ®

Nedded by two instructions

CADSL

CS683@IITB

09 Aug 2013

Possible Remedies for Structural
Hazards

e Provide duplicate hardware resources in
datapath.

e Control unit or compiler can insert delays (no-
op cycles) between instructions. This is known
as pipeline stall or bubble.

09 Aug 2013 CS683@IITB 6 CADSL

, -
Q >
£ suoljonJisul weiboud)
= o
Sz 2 <
© |] o ©
N S i
goE
gp— o)
O =z 3 W
-
el
@)
= :
N . 3
5 ° ;
Y— aM/WaN § WIW/X3
AN @
<
(&
C

Stall (Bubble

< —
e &
™M <
N
3) i — N
(&) N 2 ™
- o) -
o re) o
=
o)
A
<« —
: : 3
d
& N 3

Data Hazard

e Data hazard means that an instruction cannot
be completed because the needed data, to be
generated by another instruction in the
pipeline, is not available.

e Example: consider two instructions:
<-add SsO, StO, St1
<sub St2, SsO, St3 # needs SsO

09 Aug 2013 CS683@IITB 8 CADSL

Example of Data Hazard

CC1 CC2 CC3 CC4 CC5 > time
. Write s0 in CC5
O n © W
= K < 2 3 0 = add $s0, $t0, $t1
= NTH < T
o K =

DM

sub $t2, $s0, $t3

P
<«

Read s0 and t3 in CC3

We need to read sO from reg file in cycle 3
But sO will not be written in reg file until cycle 5

Program instructions

However, sO will only be used in cycle 4
And it is available at the end of cycle 3

09 Aug 2013 CS683@IITB 9 CADSL

Forwarding or Bypassing

e Output of a resource used by an instruction is
forwarded to the input of some resource
being used by another instruction.

e Forwarding can eliminate some, but not all,
data hazards.

09 Aug 2013 CS683@IITB 10 CADSL

Forwarding for Data Hazard

CC1 CC2 CC3 CC4 CC5 » time
s Write s0 in CC5

add $s0, $t0, $t1

=
o

sub $t2, $s0, $t3

Read s0 and t3 in CC3

Program instructions <

2,
>
O
2
r

09 Aug 2013 CSe83@IITB 11

Forwarding Unit Hardware

ID/EX EX/MEM MEM/WB
X
:E) I
to req. ‘
file
Control slignals
Source reg. | ‘
IDs from
opcode
@
09 Aug 2013 CS683@IITB 12 CADSL

Forwarding Alone May Not Work

CC1 CC2 CC3 CC4 CC5 > time
: Write s0 in CC5
Quwo 5 = Ow g | $s0, 20($s1

= mﬁﬁ - @ was W s0, 20($s1)
=

DM

sub $t2, $s0, $t3

<&
<«

A 2
Read s0 and t3 in CC3 2
S
‘g’
data needed by sub =
(data hazard) g
o
data available from memory o
only at the end of cycle 4 o
e
Jo 09 Aug 2013 CS683@IITB 13 CADSL

Use Bubble and Forwarding

CC1 CC2 CC3 CcC4 CC5 » time
Write s0 in CC5
Iw $s0, 20($s1)
O Y O Y O -~
DAY D50 "
(bubble) .
c
o
©
~
Cc
£
o
(@)
o
o

CS683@IITB GCADSL

Hazard Detection Unit Hardware

Disabl
e
write

ID/EX EX/MEM MEM/WB

Control

0

Instruction

—
L Control
signals
Source req.
IDs from
opcode ®

09 Aug 2013 CS683@IITB 15 CADSL

Resolving Hazards

»Hazards are resolved by Hazard detection and
forwarding units.

» Compiler’s understanding of how these units
work can improve performance.

09 Aug 2013 CS683@IITB 16 CADSL

Avoiding Stall by Code Reorder

C code:
A=B +E;
C=B+F;
MIPS code:
Iw $t1, 0($t0) $t1 written
w $t2, 4($t0) $t2 written
sSW $t3, 12($t0)
Iw $t4, 8($t0) $t4 written
sw §t5, 16,($t0) . /
09 Aug 2013 CS683@IITB 17 CADSL

Reordered Code

C code:
A=B +E;
C=B+F;

MIPS code:
w $t1, 0($t0)
w $t2, 4($t0)
w $t4, 8($t0)
add $t3, $t1, $t2 no hazard
SW $t3, 12($t0)
add $t5, $t1, $t4 no hazard
SW $t5, 16,($t0)

09 Aug 2013 CS683@IITB 18 CADSL

Control Hazard

e |Instruction to be fetched is not known!

e Example: Instruction being executed is
branch-type, which will determine the next
Instruction:

add S4, S5, S6
beq S$1,52,40
next instruction

40and S7, S8, S9

09 Aug 2013 CS683@IITB 19 CADSL

Stall on Branch

CC1 CC2 CC3 CC4 CC5 > time

= add $4, $5, $6

beq $1, $2, 40

Stall (bubble)

Program instructions «

%
.8
¢
%

DM

next instruction or
and $7, $8, $9

09 Aug 2013 CS683@IITB 20 CADSL

Why Only One Stall?

e Extra hardware in ID phase:

e Additional ALU to compute branch
address

e Comparator to generate zero signal

e Hazard detection unit writes the branch
address in PC

09 Aug 2013 CS683@IITB 21 CADSL

Ways to Handle Branch

e Stall or bubble
e Delayed branch

e Branch prediction:
— Heuristics
e Next instruction
e Prediction based on statistics (dynamic)
e Hardware decision (dynamic)
— Prediction error: pipeline flush

09 Aug 2013 CS683@IITB 22 CADSL

Delayed Branch Example

e Stall on branch e Delayed branch
add $4, S5, S6 beq S1, S2, skip
beq S1, S2, skip add S4, S5, S6
next instruction next instruction

skip or $7,58, 59 skip or $7,58, S9

Instruction executed irrespective
of branch decision

09 Aug 2013 CS683@IITB 23 CADSL

Delayed Branch

time

v

CC1 CC2 CC3 CC4 CC5

+—

=
beq $1, $2, skip

add $4, $5, $6

Program instructions

next instruction or
skip or $7, $8, $9

09 Aug 2013 CS683@IITB 24 CADSL

Branch Hazard

e Consider heuristic — branch not taken.

e Continue fetching instructions in sequence
following the branch instructions.

e If branch is taken (indicated by zero output of
ALU):
— Control generates branch signal in ID cycle.

— branch activates PCSource signal in the MEM cycle to
load PC with new branch address.

— Three instructions in the pipeline must be flushed if
branch is taken — can this penalty be reduced?

09 Aug 2013 CS683@IITB 25 CADSL

Branch Not Taken

Branch to Z

NOO® >

cycle b cycle b+1 cycle b+2 cycle b+3 cycle b+4

P » .
< >4 >

»
Ll |

A

v

Branch fetched Branch decoded Branch decision PC keeps D
(br. not taken)

A fetched A decoded A executed A continues
B fetched B decoded B executed
C fetched C decoded

D fetched

09 Aug 2013 CS683@IITB 26 CADSL

Branch Taken

Branch to Z
A
B
C
D
Z cycleb cycle b+1 cycle b+2 cycle b+3 cycle b+4
Branch fetched Branch decoded Branch decision PC gets Z
(br. taken)
A fetched A decoded A executed Nop
B fetched B decoded Nop
//:C fetched Nop
Three instructions are
Z fetched

flushed if branch is taken

09 Aug 2013 CSe83@IITB 27

CADSL

Branch Prediction

e Useful for program loops.

e A ‘c‘)ne-bit pregliction scheme: a one-bit buffer carries
a history bit™ that tells what happened on the last
branch instruction

e History bit = 1, branch was taken
e History bit = 0, branch was not taken

Not taken
Predict

taken branch Not taken

taken
1

09 Aug 2013 CS683@IITB 28 CADSL

Branch Prediction

Address of Target History
recent branch addresses bit(s)
instructions

Low-order PC+4 Next PC
bits used A
as index |

0

A 4

CS683@IITB 29 CADSL

A 4
J
J
J

Branch Prediction for a Loo

Execution of Instruction 4

Execu ©Old Next instr. New

tion hist. hist. T redi

seq. bit Pred. Act. bit ction

1 0 5 1 1
—
2 1 2 2 2 1 Good
3 171 2 | 3| 2 1 | Good
4 151 2 4 | 2 1 | Good
5 1 2 5 2 1 Good
T T
5] 1 2 5] 2 1 Good
—
7 1 2 7 2 1 Good
4—_;7 E—_
8 1) 2 8 2 1 Good
9 1 2 9 2 1 Good
| 10 1 2 [10] 5 | o |NEadl

h.bit = 0 branch not taken, h.bit = 1 branch taken.

09 Aug 2013 CSe83@!ITB GADSL

Two-Bit Prediction Buffer

e Can improve correct prediction statistics.

Not taken

taken

Not taken
taken

Not taken

Not taken

09 Aug 2013 CS683@IITB 31 CADSL

Branch Prediction for a Loop

s

Execution of Instruction 4

1 2 1 Good
2 1M1 2 |2 }/11 Good
3 1M« 2 [3] 2111 | Good
4 1M 2 4 | 2 +-11 | Good
5 1M 2 51 2 1-11 | Good
6 1M 2 6 | 2 | -11 | Good
7 M« 2 | 7| 21 1 |Good
8 1M« 2 | 8] 2111 | Good
9 117 2 9 | 2 111 | Good
10 | 1] 2 [10] 5 [10 [Bad
CS683@IITB 32 CADSL

Summary: Hazards

e Structural hazards
— Cause: resource conflict
— Remedies: (i) hardware resources, (ii) stall (bubble)

e Data hazards
— Cause: data unavailablity
— Remedies: (i) forwarding, (ii) stall (bubble), (iii) code reordering

e Control hazards

— Cause: out-of-sequence execution (branch or jump)

— Remedies: (i) stall (bubble), (ii) branch prediction/pipeline flush,
(iii) delayed branch/pipeline flush

09 Aug 2013 CS683@IITB 33 CADSL

Memory Performance Gap

100,000

10, 00 -] I

1,010 e

Performance

I I I
1995 2000 2005 2010

Year

I I
1980 1985 1990

09 Aug 2013 CS683@IITB 34 CADSL

Why Memory Hierarchy?

Need lots of bandwidth

BW
sec

_l.Oinstx_llfetch>< 4B +O.4Dref y 4B Xchycles
cycle | inst Ifetch inst Dref

_ 5.6GB
SeC

Need lots of storage
— 64MB (minimum) to multiple TB

Must be cheap per bit
— (TB x anything) is a lot of money!
These requirements seem incompatible

09 Aug 2013 CSe83@!ITB 35

CADSL

Memory Hierarchy Design

e Memory hierarchy desigh becomes more crucial with
recent multi-core processors:

— Aggregate peak bandwidth grows with # cores:
e |ntel Core i7 can generate two references per core per clock
e Four cores and 3.2 GHz clock

— 25.6 billion 64-bit data references/second +

— 12.8 billion 128-bit instruction references

— =409.6 GB/s!
e DRAM bandwidth is only 6% of this (25 GB/s)
e Requires:

— Multi-port, pipelined caches

— Two levels of cache per core

— Shared third-level cache on chip

VS 09 Aug 2013 CS683@IITB 36 CADSL

Why Memory Hierarchy?

e Fast and small memories

— Enable quick access (fast cycle time)

— Enable lots of bandwidth (1+ L/S/I-fetch/cycle)
e Slower larger memories

— Capture larger share of memory

— Still relatively fast
e Slow huge memories

— Hold rarely-needed state

— Needed for correctness

e All together: provide appearance of large, fast
memory with cost of cheap, slow memory

09 Aug 2013 CS683@IITB 37 CADSL

Memory Hierarchy

L1 L2 L3
C C C B Memory
CPU a a a bus h
Memory I’O bus [Disk storage
; c c
o - € Disk
memo
Register Level 1 Level 2 Level 3 Memory referenrcye
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4 MB 4-16 GB 4-16 TB
Speed: 300 ps 1ns 3-10 ns 10-20ns 50-100 ns 5-10 ms

(a) Memory hierarchy for server

L1 L2
C c @ Memory
CPU a a bus
ﬁ f]
- - FLASH
Register Level 1 Level 2 Memory n}emory
reference Cache Cache reference ISierance
reference reference
Size: 500 bytes 64 KB 256 KB 256-512 MB 4-8 GB
Speed: 500 ps 2ns 10-20 ns 50-100 ns 25-50 us

(b) Memory hierarchy for a personal mobile device

09 Aug 2013 CS683@IITB

Why Does a Hierarchy Work?

e Locality of reference

— Temporal locality
e Reference same memory location repeatedly

— Spatial locality
e Reference near neighbors around the same time

e Empirically observed
— Significant!

— Even small local storage (8KB) often satisfies >90%
of references to multi-MB data set

09 Aug 2013 CS683@IITB 39 CADSL

Why Locality?

e Analogy:
— Library (Disk)
— Bookshelf (Main memory)
— Stack of books on desk (off-chip cache)
— Opened book on desk (on-chip cache)

e Likelihood of:

— Referring to same book or chapter again?
e Probability decays over time
e Book moves to bottom of stack, then bookshelf, then library

— Referring to chapter n+1 if looking at chapter n?

09 Aug 2013 CS683@IITB 40 CADSL

Memory Hierarchy

Temporal Locality Spatial Locality

e Keep recently referenced * Bring neighbors of recently
items at higher levels referenced to higher levels

e Future references satisfied I e Future references satisfied
Uiy I & D L1 Cache Uiy

1L

Shared L2 Cache

1L

Main Memory

09 Aug 2013 CS683@IITB 41 CADSL

Thank You

09 Aug 2013 CS683@IITB 42 CADSL

