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Need for efforts in Cryptography

Does not need justification

Secure information transaction: Confidentiality in
communication, secure data storage, access control on
information, authentication, secure channel for key exchange,
non-repudiation.

New applications: digital cash, E-voting ...

Special applications: security of geographical data.

Overcoming International restrictions on use of cryptography.
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What is Cryptanalysis: breaching security

Devising ways of gaining information about an encrypted
message from publicly available messages.

Estimating security weaknesses of primitives in practical
situations by exploiting side channel information.

Subverting functionality of cryptographic schemes: faking
authentication, signature forgery, subverting protocols.

Estimating difficulty of computing secret key bits from known
plaintext ciphertext data: block and stream ciphers.

Military cryptanalysis: ciphertext only attacks, modeling
cipher machines, identification of cipher parameters.

Side channel analysis of arithmetic on HW.
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Importance of Cryptanalysis

Capability in design and security evaluation of indigenous
cryptographic infrastructure.

Technological returns: world’s first computer was developed in
Bletchley park for cryptanalysis.

Cannot reach space without investing in expertise in rocket
engineering.

Indigenous cryptological technology policy.
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Algebraic cryptanalysis of block and stream ciphers

Solving the algebraic system of equations C = E (P,K ) for
key K given a pair of blocks (C ,P).

Only a single pair of block C ,P is sufficient for solving the
key. Unlike linear and differential cryptanalysis which require
unrealistically large data to reflect statistical bias.

TMTO or Rainbow table based attacks: infeasible due to size,
requirements of same P block and large offline computation
for each key.

Solution problem is a satisfiability (SAT) problem commonly
occurring in verification and digital system design. Open
source tools are available and have effectively solved industrial
size problems of verification.

Can be formulated as a Boolean equation solving problem.
(New proposal).

SAT solution approach offers partial automation of the
cryptanalysis process.
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Figure: AES first round
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AES equation systems

Inversion map: Inv : F28 → F28

Inv(x) = x−1 for x 6= 0
= 0 for x = 0

Affine maps: State mixing TS(.), Key mixing TKr (., .)

XOR equation of round r

Qr = TS(Sr )⊕ Tkr (Xr ,Kr−1)

Inversion equations of round r

Sr = Inv(Qr−1),C4(Xr ) = Inv(C4(Kr−1))

Ci (Xr ) = Ci (Kr−1), i = 1, 2, 3.

For r = 10 the mix column operation in TS(.) is absent. For
r = 1, Q0 = P + K0. Constant in TKr (.) equals θr where θ is
the root of the polynomial f (X ) = X 8 + X 4 + X 3 + X + 1
defining F28 .
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MQ system for AES

Follows from an MQ system representation for Inv(.) map. Given
by

x2y + x = 0
xy2 + y = 0

where + is addition in F28 . Denoting by x̄ the 8-bit byte for x the
equations in bit co-ordinates are,

LȳΣx̄ ⊕ x̄ = 0
Lx̄Σȳ ⊕ ȳ = 0

Using these equations to write quadratic relations in bits of
Sr ,Qr−1 and Xr ,Kr − 1 turns out to be an MQ system in smallest
number of quadratic monomials.
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Example of field multiplication and Frobenius map as
Boolean operations

Field F24 , generator polynomial f (X ) = X 4 + X + 1. Operators
represented in the polynomial basis.

Multiplication operator

Lxy =


x0 x3 x2 x1

x1 x0 + x3 x2 + x3 x1 + x2

x2 x1 x0 + x3 x2 + x3

x3 x2 x1 x0 + x3




y1

y2

y3

y4


Frobenius map

x2 = Σ(x) =


1 0 1 0
0 0 1 0
0 1 0 1
0 0 0 1




x1

x2

x3

x4


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Estimates on number of variables and equations

Inv(.) map: 16 variables and 16 quadratic equations for each
inversion. Number of inversions in each round: 16 state
inversions, 4 key inversions: 20× 16 = 320 quadratic
equations.

Affine maps: Number of variables:
text mixing states Sr + key mixing states Xr = 128 + 128 =
256. Number of equations 256.

Total numbers for each round: Number of equations: 576,
Number of variables: 3× 128 = 384.

For ten rounds: Number of equations: 5760, Number of
variables: 3840, Number of quadratic equations: 2560.

The system of equations is banded (hence sparse). The states
of each round appear in only one block, key and output
variables common in adjacent blocks.
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Variants of AES and properties

AES notation S(nr , p, q, n),
key length = p × q × n = block length,

nr Number of rounds, p, q State matrix of bytes rows and
columns, n degree of finite field extension (byte length).

AES128 is S(10, 4, 4, 8)

Irreducible polynomial of the field extension is specified.
Different polynomial defines isomorphic AES.

Round constants can be varied. Key mixing constant in every
round is a power of the root of the polynomial.

AES is closed under composition C1 = EK1(P), C2 = EK2(C1)
then there exists K such that C2 = EK (P).

Map inversion from ciphertext (or arrow reversion) possible for
AES. Gives a fixed point problem.
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Known records

Only S(r , 1, 1, n) solved for (r , n) = (2..10, 4), (r , n) = (2, 8)
as of 2006 publication.

SAT approach reported in 2010. Records unknown.

Earlier approaches: Grobner basis and XL methods.
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Boolean equations

Polynomial equations in algebras over a field K

f (x , y , z) = 0

defined by algebraic operations of K [x , y , z ]. Solutions in K ,
algebraic extension of K .

Boolean algebras: (analogous to polynomial rings)

B0 = (0, 1,∨,∧,¬)
B1 = (0, 1, x ,¬x ,∨,∧,¬)

B0 ⊂ B1 ⊂ B2....

In general Bn consists of all disjunctions of subsets of the set
of all minterms in n variables and is the set of all Boolean
functions f : Bn

0 → B0. Hence |Bn| = 22n .
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Boolean Rings

For example

B2 = {0, 1, x , x ′, y , y ′, x ∧ y , x ∧ y ′, x ′ ∧ y , x ′ ∧ y ′,
x ∨ y , x ∨ y ′, x ′ ∨ y , x ′ ∨ y ′, x ′ ∧ y ∨ x ∧ y ′, x ∧ y ∨ x ′ ∧ y ′}

Boolean rings:

R0 = F2 = (0, 1,⊕, .) the binary field
R1 = F2/(x2 − x)
R2 = F2[x , y ]/(x2 − x , y2 − y)
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Boolean algebra to associated Boolean ring

To every Boolean algebra ({B, 0, 1},∨,∧,¬) there is associated
Boolean ring ({R, 0, 1},⊕, .) with Boolean ring-algebra
correspondence:

x ⊕ y = (x ∧ ¬y) ∨ (¬x ∨ y)
x ∨ y = x ⊕ y ⊕ xy
¬x = x ⊕ 1

Change of notations

In a Boolean algebra B denote x ∧ y by xy , x ∨ y as x + y , ¬x as
x ′. xy to also denote product in the associated Boolean ring R.
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Boolean equations

B a Boolean algebra, fi , gi : Bn → B, i = 1, 2, . . . ,m functions
defined by rules of operations in B. A Boolean system of equations
is

fi (x1, x2, . . . , xn) = gi (x1, x2, . . . , xn)

Such an equation (or a system) is said to be consistent if there
exist elements a1, . . . , an in B such that

fi (a1, . . . , an) = gi (a1, . . . , an)

All such equations can be expressed in terms of an equation with a
single Boolean function F ,

F (x1, . . . , xn) =
∑
i

(fi ⊕ gi ) = 0
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Boole-Shannon expansion

Theorem

Let be B be a Boolean algebra and f : Bn → B be a Boolean
function. Then f can be expanded in two ways as

f (x1, . . . , xn) = x1f (1, x2, . . . , xn) + x ′1f (0, x2, . . . , xn)
f (x1, . . . , xn) = [x1 + f (0, x2, . . . , xn)][x ′1 + f (1, x2, . . . , xn)]
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Normal forms

Consequences of Boole-Shannon expansion

If F : Bn → B then f has unique minterm canonical form

f =
∑

a∈{0,1}n
f (a)X a

a = (α1, . . . , αn), xa =
∏

xαi
i , x1

i = xi , x
0
i = ¬xi .

Conjunctive Normal Form (CNF),∏
j

Cj = 1

where Cj are CNF expressions

Disjunctive Normal Form (DNF),∑
j

Dj = 0

where Dj are DNF expressions.
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Solutions over Boolean algebras and SAT

Solutions of F = 0

The solutions of Boolean equations with co-efficients in B0 that
are in B0 are SAT assignments. However solutions exist even over
higher Boolean algebras if the equation is consistent. This fact has
interesting and important implications.
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Where do Boolean equations arise

Design of switching circuits: synthesis, verification, reduction.

AI and automated reasoning: Propositional logic, predicate
logic, constraint programming.

Software verification.

Economics and marketing, discrete operations research.

Search problems: molecular databases for drug discovery,
chemistry, life sciences.

Design of experiments: agriculture.

Arithmetic of computations over groups, finite fields, number
theory.

Cryptography and cryptanalysis.

SATisfiability: graph theory problems, complexity.
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Applications to cryptology

Algebraic cryptanalysis: Cipher algorithms expressed as
Boolean equations.

Hash function collision search. Condition as Boolean
equations.

Building models from data. Boolean Identification, modeling
encryption of unknown algorithms.

Boolean models of HW implementations: side channel
analysis.

Solving number theory problem: RSA factorization, Discrete
log computation in finite fields.

Boolean equation models of elliptic curves and high speed
arithmetic.
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Boolean Logic

Identities in switching logic (valid only in B0)

x + y = 1 iff x = 1 or y = 1.

xy = 0 iff x = 0 or y = 0.

In Boolean logic

x + y = 1⇔ x = y ′ + p or y = x ′ + p. (But
x + y = 0⇔ x = 0, y = 0 as in B0).

xy = 0 iff x = y ′q or y = x ′q. (But xy = 1⇔ x = 1, y = 1
as in B0).

Applying switching logic to Boolean equations may not give all
solutions. Solutions obtained using Boolean algebra contain all
solutions.
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Inequality in Boolean algebra

If x , y are in B, we write x ≤ y if x + y = y . It follows:

x ≤ y y ≤ z ⇒ x ≤ z
x ≤ y ⇔ xy ′ = 0
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Solving Boolean equations over a Boolean algebra

Example: Solving 2-CNF expressions

(x + y)(x ′ + z)(y + z)(y ′ + w) = 1

From first two brackets y = x ′ + p1, z = x + p2. Third bracket is a
tautology. Last bracket gives w = y + p3. Hence the parametric
solution is: y = x ′ + p1,z = x + p2,w = y + p3 = x ′ + p1 + p3. All
SAT assignments are

x y z w
1 p1 1 p1 + p3

0 1 p2 1

for p1, p2, p3 arbitrary in 0, 1.
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Using DPLL algorithm to solve a system

f (x , y , z) = xy ⊕ yz ⊕ zx = 0
g(x , y , z) = x ⊕ yz = 1

Shannon (DNF) expansion for f

f = x(y ⊕ z ⊕ yz) + x ′(yz)
= x(y + y ′z) + x ′(yz)
= xy + xy ′z + x ′yz

Hence f = 0 is equivalent to CNF on conjugation

(x ′ + y ′)(x ′ + y + z ′)(x + y ′ + z ′)
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cont...

Using Shannon (CNF) expansion for g = x ⊕ yz gives CNF for
g = 1,

g = [x ′ + (yz)′][x + yz ]
= (x ′ + y ′ + z ′)(x + y)(x + z)

CNF database for equations f = 0, g = 1

(x ′ + y ′)(x + y)(x + z)(x ′ + y + z ′)(x + y ′ + z ′)(x ′ + y ′ + z ′)
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DPLL to solve the system

Splitting rule at x

Xx = y ′(y + z ′)(y ′ + z ′)

which has (1, 0, 0) as a solution.

X−x = yz(y ′ + z ′)

which is unSAT. Hence (1, 0, 0) is the only solution.
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Solving over higher Boolean algebra

CNF expression

(x ′ + y ′)(x + y)(x + z)(x ′ + y + z ′)(x + y ′ + z ′)(x ′ + y ′ + z ′)

(x ′ + y ′)→ x ′ = y + p1.

(x + y) = (y ′p′1 + y)→ p1 = 0.

(x + z) = (y ′ + z)→ z = y + p2.

(x ′ + y + z ′) = (y + z ′) = (y + y ′p′2)→ p2 = 0.

(x + y ′ + z ′) = y ′ = 1.

(x ′ + y ′ + z ′)→ T .

Only solution is (1, 0, 0).
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Decision diagram based search

f (x1, x2, x3) = 1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x1x2 ⊕ x2x3 ⊕ x1x2x3 = 0

Figure: Decision Diagram
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Boolean equation method

By Boole-Shannon expansion

f = x1f (x1 = 1) + x ′1f (x1 = 0)

Eliminant at x1

f (x1 = 1) = x3

f (x1 = 0) = 1⊕ x2 ⊕ x3 ⊕ x2x3

Celim (f , x1) = x3(1⊕ x2 ⊕ x3 ⊕ x2x3) = 0

for all x2, x3. Hence all solutions are

x2 x3 f x1

0 0 1⊕ x1 0
1 0 0 0, 1
0 1 x1 0
1 1 x1 0
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Theorem on existence and structure of solutions

Theorem

Let f : B → B be a function on a Boolean algebra B. The
equation f = 0 is consistent iff

f (0)f (1) = 0

Let S be the set of all solutions of a consistent equation f = 0.
Define sets

I = {x ∈ B|f (0) ≤ x ≤ f ′(1)}
P = {f (0) + pf ′(1), p ∈ B}

Then I = P = S .
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Boolean equation in one variable

For a Boolean function f : B → B an equation f = 0 is of the
form

ax + bx ′ = 0

Consistency: If there is a solution z in B, then az = bz ′ = 0
which is equivalent to b ≤ z ≤ a′. Hence b ≤ a′ ⇔ ab = 0.
Conversely if ab = 0 then b ≤ a′ and all z such that
b ≤ z ≤ a′ in particular z = b, z = a′ are solutions.

To show that every solution z has a parametric form
z = b + pa′, p in B, just verify that if z is a solution of a
consistent equation, then for p = zb′, z ⊕ (b + pa′) = 0. This
proves the above theorem.

The set S is called the set of all particular solutions, I the set
of subsumptive general solutions, P the ste of parametric
general solutions.
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Equation in several variables

Let f : Bn → B be a Boolean function. Define

f0 = f
f1 = f0(0, x2, . . . , xn)f0(1, x2, . . . , xn)
...

...
...

fn = fn−1(0)fn−1(1)

fi+1 is called conjunctive eliminant of fi denoted Celim (fi , xi ) w.r.t.
xi .
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Corollary

A Boolean equation f (x1, . . . , xn) = 0 is consistent iff fn = 0.

The subsumptive general solution of f = 0 is given by

fn−1(0) ≤ xn ≤ f ′n−1(1)
fn−2(0) ≤ xn−1 ≤ f ′n−2(1)
...

...
...

f0 ≤ x1 ≤ f ′(1)

Parametric general solution is given by

xi+1 = fi (0) + pi f
′
i (1)

for parameters pi in B0[x1, . . . , xi ], i = 1, . . . , n − 1.
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Orthonormal expansions

A set of Boolean functions {φ1, . . . , φn} is called an orthonormal
system if

φiφj = 0, i 6= j∑
i φi = 1

A Boolean function f (X ) can be expanded w.r.t. an orthonormal
system as

f (X ) =
∑
i

αi (X )φi (X )

where αi can be obtained by solving Boolean equations

αi f = αiφi

If φi = 1 are consistent then αi = f (φi = 1).
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Boolean operations in terms of an expansion

If f =
∑

i fiφi , g =
∑

i giφi then

f + g =
∑

i (fi + gi )φi
fg =

∑
i figiφi

f ′ =
∑

i f
′
i φi

Examples of orthonormal systems

1 var x , x ′

2 var xy , x ′y , xy ′, x ′y ′

x , x ′y , x ′y ′

x ′, . . .
3, var x , x ′y , x ′y ′z , x ′y ′z ′
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SAT formulation of DL in F2m

DL problem In the finite field K . Compute x < n = |K ∗| given a, b
in K such that

b = ax

Known algorithms use the group property of K ∗. Index
calculus uses field K in indirect way (smooth polynomials over
the base field). Best algorithms are sub-exponential order

O(exp[c(log n)ε(log log n)1−ε]

where ε < 1.

Boolean equation based algorithm.

Unit computational operations Boolean.
Explicit use of properties of K .
Present Formulation: valid only for K = F2m . (Possible for
K = Fpm for small p, requires computing DL in Fp).
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MQ system

Proposition

DL is the unique solutions of the MQ system over F2m

(xiVi ⊕ 1)T i+1 ⊕ T i = 0

i = 0, . . . ,m − 1 with boundary conditions T 0 = b, Tm = 1 where
unknowns xi = 0, 1 are DL bits, V0 = a, Vi+1 = V 2

i and variables
T i in F2m .
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Boolean system of equations

Let t i denote m-tuples of binary co-ordinates of T i in a fixed basis
chosen to represent F2m as a vector space Fm

2 .

Proposition

The MQ system above has following representation as an MQ
system

xi t
i+1 ⊕ Fi (t

i+1, t i ) = 0

where xi and components of t i are Boolean variables and maps Fi
have linear functions in their components.

Each of the above equations has only one quadratic term.
Other terms are linear.

Each bit xi appears in a single block of m equations.

The system gives a generic model of a hard SAT instance of
an MQ system due to the perceived hardness of the DL
problem.
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Diffie Hellman conjecture

Diffie Hellman Problem Given a, b = ax , c = ay in a group
(for some unknown x , y), compute s = cx = by .

If x = Dlogab is computed then s can be computed in
polynomial time.

Diffie Hellman conjecture Computing s is as much difficult as
computing x from (a, b).
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Affirmative answer to Diffie Hellman conjecture in SAT
sense

Proposition

The DL MQ system together with MQ system representing the
equation s = cx is reducible in polynomial time to an MQ system
of the form

Φ(T i ,R i ) = 0

with boundary conditions T 0 = b and R0 = s, Tm = Rm = 1

Proof: By Boolean elimination of xi from combined MQ systems
for b = ax and s = cx .

Corollary

The DH problem in F2m is polynomial time equivalent to DL
computation as a SAT instance.

Virendra SuleProfessorDept. of Electrical EngineeringIIT Bombay vrs@ee.iitb.ac.inAlgebraic cryptanalysis: AES and Boolean equations



Affirmative answer to Diffie Hellman conjecture in SAT
sense

Proposition

The DL MQ system together with MQ system representing the
equation s = cx is reducible in polynomial time to an MQ system
of the form

Φ(T i ,R i ) = 0

with boundary conditions T 0 = b and R0 = s, Tm = Rm = 1

Proof: By Boolean elimination of xi from combined MQ systems
for b = ax and s = cx .

Corollary

The DH problem in F2m is polynomial time equivalent to DL
computation as a SAT instance.

Virendra SuleProfessorDept. of Electrical EngineeringIIT Bombay vrs@ee.iitb.ac.inAlgebraic cryptanalysis: AES and Boolean equations



Decisional DHP

If b = ax , c = ay is a Diffie Hellman session, the Decisional
Diffie Hellman Problem (DDHP) is to decide given s whether
s = axy .

SAT formulation: s is the shared key iff s = by = cx , b = ax ,
c = ay is SAT.

DDHP is solved by SAT assignments in an MQ system of the
same form as that in the DL problem.

Theorem

DDHP is polynomial time equivalent to DL computation as a SAT
instance.
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Conclusions

Most ciphers designed to withstand statistical and TMTO
attacks. Urgent need to evaluate security by algebraic
cryptanalysis which can be carried out by Boolean equation
solving.
SAT problems can be solved by Boolean equation methods.
Theory of Boolean equations has unexplored potential for
parallel algorithms.
Boolean equation formulation of AC of block and stream
ciphers, number theory problems such as discrete log and
factorization are not well explored.
New high speed algorithms for arithmetic, group and finite
field operations, elliptic curves can be explored from this
viewpoint.
HW realizations in FPGAs using Boolean equation theory are
not well explored.

Thank You
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