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1 Introduction

Analog circuits and and their interconnections, broadly called analog systems, are indis-
pensable components of modern communication and electronic systems as well as electronic
converters used in power systems. Almost all such circuits are built using active devices
which require an external excitation for their operation. Active devices exhibit large sen-
sitivity of performance to variations of sources, device parameters, operating conditions
such as temperature and their operation is often unstable or required to be kept sufficiently
stable. Active devices are also difficult to model accurately especially at high frequencies
where they are often operated. To harness superior properties of active devices and circuits
it is thus necessary to embed such circuits within systems which provide stable operation
along with desired level of sensitivity reduction and desired response over a wide band.
While interconnections of passive systems is always stable this is not so for active systems.
This is in fact the reason why stability is never a requirement in passive circuit design. On
the other hand an improperly designed interconnection of stable active circuits may even
result in deterioration of stability and sensitivity. Hence for active circuit design it is nec-
essary to build a mathematically rigorous theory of designing interconnections which will
provide structure of interconnections for stablility and facilitate solution of performance
optimization problems. For passive circuit synthesis a state space based systems theory
approach is proposed in [4]. In case of active networks the problem of compensation design
is also important apart from a purely synthesis problem, both of which require a rigorous
stabilization theory. Purpose of this article is to propose such a stabilization theory in the
formalism of factorization theory of feedback systems and show how this leads to an H∞
formulation of the sensitivity reduction problem.

Application of fedback control for design of amplifiers has a long history even before the
book by Bode [1]. This work can be considered as one of the early attempts at designing
active circuits using feedback control concepts. Feedback theory has subsequently enor-
mously advanced and has provided solutions of several problems of control theory (broadly
known as H∞ feedback control theory [8]). This theory has also found wide and successful
applications in engineering. However an application of these advances to the problem of
designing active circuits and systems is seldom found in the literature. Much of the analog
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system design is based on designer’s experience. A systems theory approach shall facilitate
formulation of designer’s experience into mathematical steps and optimization problems.
Feedback control approach of Bode has also been applied to design wideband active circuits
with modern semiconductor devices, however the methods are effective only upto single loop
designs [2]. Problems of multiport circuit compensation or typically multistage designs are
complex enough for which a systematic approach (such as H∞) is warranted. Due to lack
of a systematic approach for multiport active circuit design it is difficult to answer several
questions such as, how close is the performance of a designed system to the optimal under
the given freedom or how it can be improved, whether the desired performances specifica-
tions are achievable under the given freedom of design, which requirements are mutually
conflicting etc.

1.1 Representation of circuits and systems

It is often invariably presumed that design of feedback compensation can only be done with
the help of representing an interconnection in terms of signal flow graph of an explicit feed-
back system. On the other hand a connection of circuits is always performed at ports of the
same type (either voltage or current) and follows Kirchoff’s laws at every such connection.
In such connections independent sources can be treated as inputs and responses to these
sources as outputs. Hence there is a natural pairing of sources and responses as physical
quantities. In control systems there are either inputs and outputs and often latent vari-
ables which are neither. Outputs of a control system are not paired with external inputs.
An interconnection of control systems follows rules of signal flow graph. Hence if feedback
quantities are to be explicitly utilized to design an interconnected circuits then it is nec-
essary to obtain the signal flow graph and appropriately define the loop transfer function
quantities. This process need not always be convenient as networks increase in complexity.
Defining loop transfer functions is extremely impractical when there are multiple loops.
Hence it is necessary to utilize for design the most natural mathematical representation of
interconnections of circuits in terms of multiport representations directly without invoking
the signal flow graph1. To conclude, we make following key observations to highlight the
differences between the representation of interconnected circuits via circuit connections and
by signal flow graph.

1. Applying signal flow graph as required by feedback theory to circuit design imposes
restrictions of signal flow graph which are not part of circuit’s physical laws. Feedback
structure is a mathematical representation and not natural to circuit interconnections.

2. The connections of elements in a system described by a signal flow graph are cascade,
sum or feedback type. These are not equivalent to circuit element interconnections
such as parallel and series. The mathematical rule of cascade connection as product
of functions cascaded is not valid for cascade connection of arbitrary network func-

1In behavioral system theory [9] notion of inputs are considered more generally from their mathematical
property of freeness. Behavioral consideration of variables and interconnection utilizes mathematical models
arising from physical laws hence can formulate problems of interconnection from the most general point of
view. For circuit connections however the inputs and outputs are in terms of sources and responses and
hence a natural choice
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tions cascaded at ports. Such rules can be applied only for special transfer function
parameters of multiport networks.

3. Identifying feedback loops and elements is not convenient (both theoretically and
computationally) for multi port design problems.

4. Even if a design is completed by identifying elements of a signal flow graph, its real-
ization is in circuit form. Hence a circuit compensation and interconnection may be
designed directly without identifying feedback structure.

Giving up explicit feedback structure in circuit design appears to create the disadvan-
tage that the traditional Nyquist criterion for stability is no more applicable for stability.
However, note that Nyquist criterion, or for that matter Routh Hurwitz criterion are useful
for stability analysis of feedback systems and can be used for determining number of roots
of polynomials in specific regions of the complex plane. These criteria DO NOT resolve the
problem of stabilization or that of determining a stabilizing controller in feedback systems.
A rigorous stabilization theory is well developed in terms of factorization approach as well
as in solutions to problems of state space theory such as observer and spectral assignment
[5, 8, 7]. In this article we show precisely that the present problem of circuit design or
compensation can be formulated in the mathematical formalism of these approaches and
there is no explicit need for feedback structure to do stabilization of active circuits. We also
show that the H∞ optimization theory can be utilized for sensitivity optimization without
the explicit feedback structure.

We shall follow notations and mathematical background of linear time invariant circuits
from [3]. A network function is identified with the ratio of Laplace transform of two signals
which will be a rational function of a complex variable with real co-efficients. The definitions
of impedance and admittance functions are standard. Formulas for network functions of
series and parallel connections are also standard for multi port circuits.

1.2 Stabilization problem in single port

The simplest of circuit connections are defined at single ports such as series and paral-
lel single port connections of impedances and admittances. Consider a voltage source vs
connected to an active impedance Z at the port and denote by Vs its Laplace transform.
In transformed quantities we have Ir = Z−1Vs where Ir is the Laplace transform of the
response current. There is a standard definition [3] of stability for such a circuit. A volt-
age source fed circuit is called short circuit stable (SCS) if under zero initial conditions a
bounded voltage source (as a function of time) has a bounded current response. Thus the
single port voltage fed impedance network is SCS iff the network function Z−1 is holomor-
phic in the closed right half of the complex plane C̄+. Such network functions are called
stable functions.

1.2.1 Short circuit stabilization

If the voltage fed impedance is to be compensated, the only compensation which can affect
the voltage through Z is a series compensation impedance Zc. The (controlled) current in Z
due to this compensation is Ir = Vs/(Z+Zc). hence following the definition of SC stability
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we can pose the stabilization problem in one port to be that of finding all impedances Zc

such that (Z + Zc)
−1 is stable. However formally we choose a stronger requirement in

defining stabilization as follows.

Problem 1 (Short circuit stabilization). Given a one port circuit with impedance function
Z, which is fed by a voltage source, find all impedance functions Zc such that the impedance
of the series connection ZT = (Z + Zc) satisfies

1. Z−1T is holomorphic in the C̄+ i.e. a stable function.

2. Z̃−1T is a stable function where Z̃T = Z̃ +Zc for all Z̃ in a sufficiently small neighbor-
hood of Z.

If Zc satisfies the conditions above we call Zc a short circuit stabilizing compensation of Z.

Remark 1. The second condition in the definition of the short circuit stabilization is
important for practical reason. Since models of impedances are always approximate we
expect a compensator to provide stable interconnection at least over a small neighborhood
of a nominal model impedance Z of the circuit. More generally we expect a stable network
to remain stable for sufficiently small perturbations of both, the network function Z and
the function Zc of the compensator. The second condition suffices to meet this objective.

1.2.2 Open circuit stabilization

Analogous open circuit stability and stabilization problem can be defined for a current fed
circuit. For instance if an admittance Y is being fed by a bounded current source whose
Laplace transform is Is, then it is called open circuit stable(OCS) if the voltage response
Vr = Y −1Is across it is a Laplace transform of a bounded function under zero initial
conditions. Thus the circuit is OCS iff Y −1 is a stable network function. Now the current
through Y can be controlled only by a parallel compensator admittance Yc and then the
parallel connected circuit is stable if the combined admittance function YT = Y + Yc of the
parallel connection has Y −1T a stable function. Hence we define the open circuit stabilization
problem as follows.

Problem 2 (Open circuit stabilization). Given a one port circuit with admittance function
Y , which is fed by a current source, find all admittance functions Yc such that the admittane
of the parallel connection YT = Y + Yc satisfies

1. Y −1T is a stable function.

2. Ỹ −1T is a stable function where ỸT = Ỹ + Yc for all Ỹ in a sufficiently small neighbor-
hood of Y .

If Yc satisfies the condition above we call Yc an open circuit stabilizing compensation of Y .

These notions of stability and stabilization shall lead us to build a theory for stabi-
lization of multi-port active linear time invariant (LTI) circuits to formulate and solve
sensitivity and performance optimization problems. In the literature on circuits, open and
short circuit stability of one port networks have been well known [3], however surprisingly
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the corresponding stabilization problems do not appear to have been defined in the above
systems theoretic sense in the literature. Since the short circuit and open circuit stability
concepts are mutually exclusive the two stabilization problems are also mutually exclusive.
We show in the next section how such a problem can be formulated and solved with the
help of factorization approach which originally arose for stabilization of feedback systems
[5, 7] but can be applied to our problem due to mathematically similar structure of the
problem but without any explicit conversion to feedback signal flow graph.

2 Structure of the stabilizing compensator for single port
stabilization

We now briefly explain the basic mathematical premise of our approach by solving the single
port case of short circuit stabilization problem. The setting is based on the factorization
approach [5]. First consider the algebra S of stable network functions. For the present
purpose we shall take S to be the algebra of rational functions of one complex variable with
real co-efficients which are holomorphic in C̄+. This algebra is the set of all stable network
functions of interest. A general network function Z is considered to be an element of the
ring of fractions R = {U/V,U, V ∈ S, V 6= 0}. The algebra S is known to be a Euclidean
domain with degree of an element U to be the number of zeros of U in C̄+ and hence every
pair of elements U, V have the greatest common divisor (gcd) d which is unique modulo
invertible elements (called units) in S and can be expressed as

d = UX + V Y

for some X,Y in S. A fraction U/V can be expressed with suitable coprime fractions U, V
whose gcd is a unit which can be taken as the constant function 1. For the single port case
we have two stabilization problems and corresponding structures of stabilizing compensators
as proved below.

2.1 Short circuit stabilization

Consider an impedance function Z being fed by a voltage source. A stabilizing compensation
Zc is a series impedance which satisfies the conditions of the short circuit stabilization
problem obove. Such a set of all stabilizing Zc is given by

Theorem 1. Let Z has a coprime fractional representation Z = U/V and X,W in S
satisfy the identitiy UW +V X = 1. Then the set of all functions Zc which are short circuit
stabilizing compensators of Z are given by fractional representation

Zc = (X +QU)(W −QV )−1 (1)

where Q is an arbitrary element of S such that W −QV 6= 0.

Proof : Consider a compensator with coprime fractional representation over S as Zc =
UcV

−1
c . Then Zc is a stabilizing compensator (of the short circuit stabilization problem) iff

Z−1T = (Z + Zc)
−1 = V (UcV + VcU)−1Vc = V∆−1Vc
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where
∆ = UcV + VcU

is stable as well as Z̃−1T is stable for Z̃ perturbed sufficiently small way from Z. By the
first condition of the short circuit stabilization problem, the function ∆ can have zeros in
C̄+ exactly at the zeros of V or Vc or both of the same multiplicity. However when Z
perturbs to Z̃ these zeros may not get canceled to make Z̃−1T stable. Hence Zc is stabilizing
iff ∆ has no zeros in C̄+. In other words ∆ is a unit of S. Hence we can write modified
fractional representation Zc = (Uc∆

−1)(Vc∆
−1)−1 for the stabilizing controller. For such a

representation of Zc the function ∆ = 1. Let W,X be solutions of the identity UW+V X = 1
then all other solutions are W1 = W −QV , X1 = X+QU . This proves the formula claimed
for all Zc which provide a stable compensated voltage fed impedance ZT 2.

In practice we also need to impose the restriction on Q that X + QU 6= 0. One conse-
quence of the the above theorem is that the impedance Z of the circuit and Zc that of the
stabilizing compensator, cannot share a common zero in C̄+ (called a non-minimum phase
(NMP) zero). Even their closer proximity in C̄+ would mean that the connected circuit has
poor stability margin.

2.2 Open circuit stabilization

We can now briefly state the analogous formula for stabilizing Yc. Due to the algebraic
duality with the formulas in short circuit stabilization we can immediately state the following
theorem for the structure of admittance of a stabilizing compensator Yc which is connected
in parallel to Y for the purpose of controlling the current in Y .

Theorem 2. Let Y has a coprime fractional representation Y = U/V and W,X in S
satisfy the identity UW + V X = 1. Then the set of all functions Yc which are open circuit
stabilizing compensators of Y are given by fractional representation

Yc = (X +QU)(W −QV )−1

where Q is an arbitrary element of S such that W −QV 6= 0.

The proof is identical to that of the earlier theorem. Analogous to the short circuit
stabilization, open circuit stabilization implies that the circuit admittance Y and that of
the stabilizing compensator Yc cannot share a NMP zero in C̄+, moreover even a close
proximity of such zeros would imply poor stability margin.

For completeness we can try to see the impedance formula for open circuit stabilization.
Consider the current fed impedance Zc forming an open circuit stable circuit with the
impedance Z where Z and Zc are connected in parallel. The required network function for
OCS is

Y −1T = ZT = ZZc/(Z + Zc)

Then in terms of fractional representations above

ZT = U(UcV + VcU)−1Uc

Hence the formula for stabilizing Zc remains the same as above in the case of SCS.
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Note that the structure of the stabilizing compensator in either of the two problems
above is closely related to the coprime fractional representation of the impedance Z and
admittance Y functions. Hence although an active circuit can have stable impedance but
unstable admittance (or vice versa) thereby making it OCS but not SCS, it is both open
and short circuit stabilizable.

2.3 Sensitivity reduction problem for single ports

A primary reason for use of feedback in control is reduction of sensitivity of the system
to variations in parameters (at least over a range of frequencies of operation). Bode had
recognized this fact and explicitly related extent of feedback to uncertainty [1]. The modern
tradition of robust control [5, 8, 7] is founded on Bode’s ideas, a systematic development of
a theory of feedback stabilization, H∞ optimization and state space theory. In the present
case of active compensation at one port we can define analogous sensitivity function and
formulate the sensitivity reduction problem as follows.

2.4 Sensitivity of a voltage fed one port

Consider an impedance Z being fed by a voltage source V which has response current
I = V/Z. If the impedance perturbs to Z̃ the current perturbs to Ĩ = V/Z̃. If the
circuit is compensated as above by a series impedance Zc, the current in the network is
Ic = V/(Z + Zc) which perturbs to Ĩc = V/(Z̃ + Zc). Following the sensitivity formula of
Bode [1, 7] we define the sensitivity of the current to be

S = limZ̃→Z
Per unit change in current in compensated network
Per unit change in current without compensation

= limZ̃→Z
(Ĩc−Ic)/Ic
(Ĩ−I)/I

= limZ̃→Z
(Z̃+Zc)−1−(Z+Zc)−1

(Z̃−1−Z−1)

= Z
Z+Zc

Similar sensitivity formula can be derived for the current fed one port.

2.4.1 Sensitivity minimization problem

The stabilizing compensator formula (1) can now be used to get a formula for the sensitivity
function in terms of the free parameter function Q. Substituting for Zc in (1) gives

S = U(W −QV )

The problem of designing a compensator Zc to achieve the desired frequency domain profile
defined by a magnitude function φ(ω) as

|S(jω)| ≤ φ(ω) (2)

is then equivalent to finding a Q in S such that

||ΓU(W −QV )||∞ ≤ 1
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where Γ is a stable function such that |Γ(jω)| = 1/φ(ω). Thus the sensitivity reduction
objective of compensation leads to solving the H∞ minimiation problem. Find

γ0 = min
Q
||ΓU(W −QV )||∞

The sensitivity objective (2) is satisfied iff γ0 ≤ 1. Several other performance objectives
can be considered but sensitivity is of prime importance which warrants feedback compen-
sation. Other performance objectives in design can be achieved by compensation whose
port connections need not amount to closed loop control. Hence a two degree of freedom
compensation can be considered in which the two stages of compensation one for sensitivity
reduction and the other for response improvement can be separately designed as is well
known in feedback system design [7].

2.4.2 Sensitivity tradeoff for the voltage fed impedance

In feedback theory there are well known results known as sensitivity tradeoffs [7]. These are
all applicable in the present design case as well. We shall briefly mention these here leaving
details to be developed elsewhere. For instance if the circuit is fed by a voltage source and
has impedance Z as considered above, even if the circuit is SCS i.e. Z−1 is stable but not
OCS i.e. Z is not a stable function (has a pole in C̄+) then in coprime fractions Z = UV −1

the function V has a NMP zero say λ ∈ C̄+. For such an impedance the weighted sensitivity
function ΓS has the lower bound

||ΓS||∞ ≥ Γ(λ)U(λ) = δ

Hence when δ > 1 the sensitivity cannot be made small over the bandwidth as modeled
by Γ. In such cases both the magnitude of sensitivity may have to be compromised by an
increase and bandwidth may have to be compromised by decrease. Other tradeoffs such as
waterbed effect known in feedback theory shall also be applicable in this design problem.
For feedback systems details of such tradeoffs are well known and discussed in [7, 6].

This completes a brief account of systems theory approach for a single port circuit
design case. The multi port case can be built on similar lines however involves much
algebraic complication due to the matrix valued nature of hybrid parameters of multi ports
and matrix version of sensitivity minimization. This theory is described in the next section.

3 Multi port stabilization for Bounded Source Bounded Re-
sponse (BSBR) stability

For multi port circuits, the open and short circuit stability both need to be considered
simultaneously since voltage and current independent sources can exist at the ports simul-
taneously. Hence an analogous stability amounting to boundedness of responses for bounded
sources and the corresponding stabilization problem are the appropriate generalizations of
the single port case. We thus begin from such a definition. Consider a linear time invariant
circuit with a hybrid representation

Yr = HUs (3)
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where Us denotes the vector of Laplace transforms of independent sources of the circuit while
Yr denotes the vector of Laplace transforms of the responses at the these ports (respecting
the indices). We call this circuit bounded source bounded response (BSBR) stable if for zero
initial conditions of the network’s capacitances and inductors, uniformly bounded sources
have uniformly bounded responses. This is the case iff the network function (matrix) H is
stable i.e. H has every entry belonging to S. (We shall denote all matrices (of size clear
from context) whose entries are stable by M(S)).

3.1 Stabilization problem

Consider a compensation network of same number and type of independent sources as the
circuit in (3) to be compensated.

Ycr = HcUcs (4)

Note that if the compensation is to have any controlling effect on currents (respectively
voltages) of (3) in response to voltage (respectively current) sources, then the compensator
must be connected to the circuit in such a way that the voltage ports of individual networks
are connected in series and current ports of individual networks are connected in parallel.
Hence the vector of independent voltage sources to the interconnected network, denoted
V , must be the sum of voltages at the voltage ports while the vector of independent cur-
rent sources to the interconnected network, denoted I must be sum of the currents in the
current ports of the two networks. This shows that the independent source vector of the
interconnected network is given by (in Laplace transform)

U = Us + Ucs (5)

and the response vector Y of the interconnected network satisfies

Y = Yr = Ycr (6)

We now consider a condition of non-singularity on all multiport circuits to be considered
in our theory. This condition is the assumption that the hybrid representations (3) satisfy
detH 6= 0 as network functions. Due to this for every network function matrix H there is a
unique network function matrix G = H−1. In our circuit, denote G = H−1 and Gc = H−1c .
Then from (5), (6) it follows that

Y = (G+Gc)
−1U (7)

is the hybrid representation of the interconnected circuit. Clearly the interconnected circuit
is BSBR stable iff (G+Gc)

−1 is a matrix of stable network functions. Using this form of the
representation of the interconnected circuit we define the stabilization problem as follows.

Problem 3 (Stabilization problem for circuit interconnection). Given a nonsingular rep-
resentation (3) of a linear time invariant circuit with G = H−1, find all nonsingular repre-
sentations Hc with Gc = H−1c such that

1. (G+Gc)
−1 belongs to M(S)

2. (G̃+Gc)
−1 belongs to M(S) for G̃ sufficiently close to G
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Any Gc satisfying the above is called the stabilizing compensator of (3).

A solution of the stabilization problem in terms of the formula for all stabilizing com-
pensators which was derived for one port case above shall require extension of the coprime
factorization to matrix case. Such a theory is well known for matrix functions in [5].

3.2 Structure of the stabilizing compensator

Extending the above approach for stabilization in the multiport case is much complex as
compared to the single port case as this requires coprime factorization of hybrid matrix
functions. The structure of the stabilizing compensator involves both left as well as right
coprime matrix fractions. As above we start with S the ring of stable matrix functions
(which are rational functions of a complex variable holomorphic in C̄+) and denote by M(S)
matrices over S when their sizes are clear from the context. We shall follow developments
in [5] for matrix coprime factorization over S. The concept of doubly coprime fractions of
rational matrices shall be most suitable for our purpose.

3.2.1 Doubly coprime factorization and stabilizing compensator

Any rational function matrix G (a network function in our case), has the doubly coprime
factorization (DCF) which we now describe. For proof of existence of such a factorization see
[5]. Given a rational matrix H of a complex variable with real co-efficients, there exist pairs
(N,D), Ñ , D̃) in M(S) such that D̃, D are square and nonsingular, G = ND−1 = D̃−1Ñ
and there exist pairs of matrices (W,X) and (W̃ , X̃) in M(S) such that[

X W

−Ñ D̃

] [
D −W̃
N X̃

]
= I (8)

The formula for stabilizing compensation obtained in the single port case can be extended
to the multiport case using the DCF of the network function G (or the hybrid function H
of the multiport circuit). We state this theorem below and outline the proof in Appendix.

Theorem 3. Let the hybrid representation of a given circuit be as in (3) and G = H−1. Let
G have a DCF (8). Then the set of all stabilizing compensators of the circuit represented
by (4) have Gc in given by any one of the following fractional representations.

Gc = (W −QD̃)−1(X +QÑ)

where Q is a freely chosen matrix in M(S) such that det(W −QD̃) 6= 0. Alternatively Gc

is also given by fractional representation

Gc = (X̃ +NQ)(W̃ −DQ)−1

where Q is a freely chosen matrix in M(S) such that det(W̃ −DQ) 6= 0.

Since we require that Gc is also non-singular so that the hybrid representation (4) exists,
Q in above formulas must also satisfy non-singularity condition for matrices (X+QÑ) and
(X̃+NQ). Conditions for existence of such Q in M(S) may not pose much difficulty hence
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their discussion is omitted. The formula for the composite compensated circuit can also be
considered in any one of the two forms as follows. The proof follows easily by substitution
of the above parametrized formulas of Gc in (G+Gc)

−1.

(G+Gc)
−1 = D(W −QD̃) = (W̃ −DQ)D̃ (9)

3.3 Sensitivity function

Definition of sensitivity in the multiport case needs proper interpretation since the response
Yr in this case is a vector quantity hence the notion of per unit change cannot be defined
by taking ratios. Considering the hybrid representation (3) of the circuit if H perturbs to
H̃ then the response Yr perturbs to Ỹr = H̃Us. Hence we can define the per unit change in
the response of the circuit as the matrix function R such that

Ỹr − Yr = RYr

It follows that
Ỹr − Yr = (H̃ −H)Us

= (H̃ −H)H−1Yr

Hence we get
R = (H̃ −H)H−1

Now the response Y in the compensated circuit is Y = (G + Gc)
−1U which perturbs to

Ỹ = (G̃+Gc)
−1U where G̃ = H̃−1. Hence per unit change in the compensated network is

taken as the matrix function R̂ such that

Ỹ − Y = R̂Y

We can now define the Bode sensitivity of the composite network to be the matrix function
S which satisfies

lim
H̃→H

R̂ = S lim
H̃→H

R (10)

Consider computation of the formula for S. We have

Ỹr − Yr = (H̃ −H)Us

= (H̃ −H)H−1Y

hence
R = (H̃ −H)H−1

Similarly, for the composite circuit we have

Ỹ − Y = [(G̃+Gc)
−1 − (G+Gc)

−1]U

= [(G̃+Gc)
−1 − (G+Gc)

−1](G+Gc)Y

hence
R̂ = (G̃+Gc)

−1[G− G̃]

= (G̃+Gc)
−1(H−1 − H̃−1)

= (G̃+Gc)
−1H̃−1(H̃ −H)H−1
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From the definition of the sensitivity function (10) we observe that since S must satisfy

limH̃→H(G̃+Gc)
−1H̃−1(H̃ −H)H−1 = S limH̃→H(H̃ −H)H−1

it follows on taking limits that
S = (G+Gc)

−1G (11)

This way we obtain a generalization of the single port sensitivity formula derived in the
previous section. Note that the formula can also be expressed as

S = Hc(H +Hc)
−1

Substituting now the formula for the stabilizing compensator we obtain

S = (D̃−1Ñ + (X̃ +NQ)(W̃ −DQ)−1)−1D̃−1Ñ

= (W̃ −DQ)Ñ
(12)

which is the parametrized form of the sensitivity function of the multiport composite circuit.

3.4 Sensitivity optimization problem

The parametrized formula for sensitivity now allows formulation of an H∞ optimization
problem. The sensitivity function is a matrix valued function and the generalization of the
notion of gain in this case is the spectral norm ||S(jω)|| at frequency ω. If φ(w) is a positive
function defining the desired bound on sensitivity gain

||S(jω)|| ≤ φ(ω)

and Γ(s) is the minimum phase function for the boundary value φ(ω)

|Γ(jω)| = 1/φ(ω)

Then the specification
||S(jω)|| ≤ φ(ω)

is satisfied by the H∞ bound
||SΓ−1||∞ ≤ 1

Hence achieving the sensitivity specification above is equivalent to computing the optimal
value

γ0 = min
Q∈M(S)

||(W̃ −DQ)ÑΓ−1||∞

Then the sensitivity specification is satisfied iff γ0 ≤ 1. In practice more general matrix
weighing Γ can be considered to provide different penalties at different ports. Typical design
problems of multiports exercising such strategies shall be interesting case studies. These
shall be pursued in further work.
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4 Conclusions

This report proposes modern linear systems theory approach for design of compensation for
active circuits. It is first observed that the compensation design for sensitivity reduction
need not be explicitly formulated in terms of signal flow graph of a feedback system. A
parametrization of all compensators which form a stable circuit is determined using the
well known coprime factorization theory. The resulting parametrization of the sensitivity
function leads to formulation of sensitivity reduction as an H∞ optimization problem. This
is thus a mathematically systematic approach to design of broadband analog systems which
should facilitate precise statement of design objectives and analysis of design tradeoffs and
work for multiport circuits. Compensation and synthesis of analog active circuits cannot
be achieved without the constraint of stability which imposes structural restrictions on
the circuit building blocks. Goals of sensitivity reduction by compensation can only be
achieved under such constraints. These structures have been well understood in feedback
control theory. This report shows that the underlying mathematical theory theory can be
extended to multiport circuit connections without explicit formulation in terms of feedback
structure.
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