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1 Introduction

The well known Jacobian problem [2] is defined for polynomial maps F : Cn → Cn described
by n-tuples of polynomials fi, i = 1 . . . n in the polynomial ring C[X1, . . . , Xn]. Such an F
is said to be invertible as a polynomial map (henceforth simply called invertible) if there is
an n-tuple of polynomials gi in C[X1, . . . , Xn] such that

fi(g1, . . . , gn)(X1, . . . , Xn) = Xi

for i = 1, . . . , n. Compactly the above polynomial compositional relation can be written as

F ◦G = Id

The Jacobian of F is the matrix of formal partial derivatives

JF = [∂Xifj ]

The Jacobian problem is unresolved for n ≥ 2 stated as

Conjecture 1 (Jacobian conjecture (JC)). Let n ≥ 2. Then the map F is invertible if

det JF = c 6= 0

where c is a constant.

The condition above is known as Jacobian condition. The problem has remained unre-
solved for rational, real or the complex field. The questions we want to explore in this note
are, how to define a finite field case of this problem, what computational problems arise
when the complex field is replaced by a finite field and whether the problem of verifying
Jacobian condition on finite fields is computationally fieasible. The idea of defining the Ja-
cobian condition and stating an analogous problem over finite fields appeared in [1] which
formed a motivation for this article. On closer examination it appeared that the problem
of defining analogous JC on finite fields involved subtleties. In this article we proceed with
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defining the JC only on prime fields and analyze the computational feasibility of verifying
the analogus conjecture on binary fields for only two variables.

One difference created due to such a change of field is that over the complex field
the polynomial functions f : Cn → C correspond one to one with polynomials in the
polynomial ring in n variables with co-efficients in C on the other hand if K is a prime field
the polynomial ring K[X1, . . . , Xn] is infinite while the ring of functions f : Kn → K is
finite. For K = Fp this ring corresponds to K[X1, . . . , Xn]/I where I is the ideal generated
by (Xp

i −Xi). By Lagrange interpolation every function f : K → K is equal to a polynomial
function f(x) of degree at most p− 1. We shall call f(x) as a representative of f .

This raises the question, how do we define the partial derivatives of Fp-valued functions
with arguments in Fp and the Jacobian condition so that we can state an analogue of JC?
One way of resolving this question is to define a notion of differential of the function by
analogy with differential of a map in real variable calculus. We shall call this a formal dif-
ferential of a function f . It turns out that a formal derivative of a polynomial representative
of f also represents the formal differential of f .

2 Function in a prime field and its formal differential

Consider a prime field Fp and a function f : Fn
p → Fp. By interpolation, such a function is

equal to a polynomial function with Fp co-efficients called a representative of f . Let this be
denoted as f(x1, . . . , xn) where arguments xi take values in Fp. Clearly the highest power
with which any of the arguments appear in f(x1, . . . , xn) is p − 1 since these satisfy the
equation xp − x = 0. We say that f has lowest degree d if f evaluates all monomials in
xi of degree < d to zero while at least one degree d monomial has assignments of xi in Fp

such that f has nonzero value. It follows that a function has nonzero lowest degree d iff
any polynomial representative of f has a nonzero co-efficient for at least one d degree term
and all co-efficients of terms of degree < d are zero.

Definition 1 (Formal differential and the Jacobian). Let f be a function f : Fp → Fp. The
differential of f is the function Df : Fp → Fp such that for any y in Fp, the function

f(x+ y)− f(x)−Df(x)y = θ(y2)

where θ(y2) is a function with lowest degree ≥ 2.
For a function of several variables f(x1, x2, . . . , xn) (denoted as f(x)), the differential of

f is the n-tuple of functions Dfi : Fn
p → Fp such that for any n-tuple yi in Fn

p ,

f(x+ y)− f(x)−
∑
i

Dfi(x)yi = θ(y2i )

where θ(y2i ) is a Fp-valued function on Fn
p with lowest degree ≥ 2. The functions Dfi(x)

are called the i-th component of formal partial differentials of f (or i-th partial differential
of f).

For a function F : Fn
p → Fn

p let fi(x), i = 1, 2, . . . , n denote the component functions
such that F = [f1, . . . , fn] for all values of the arguments. Then the Jacobian of F is the
matrix function

JF (x) = [φ(i,j)(x)]
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where φ(i,j)(x) is the j-th partial differential of fi.

From this definition it follows that if f(x) is a polynomial function in Fp of the form

f(x) =

p−1∑
i=0

aix
i

then

Df(x) = a1 +

p−1∑
i=2

aiix
i−1 mod p

Hence given f : Fp → Fp the formal differential Df exists. These computations can be
carried out for functions of n variables. The composition of two functions f, g : Fp →
Fp denoted f ◦ g = f(g(x)) is well defined as a function in Fp. In terms of polynomial
representations the resulting composite function is a composition of the polynomials reduced
modulo xp−x for the arguments while co-efficients are reduced modulo p. Since the formal
differential Df of a polynomial f(x1, . . . , xn) satisfies the chain rule

Df(g(x)) = Df.Dg

if F : Fn
p → Fm

p , G : Fk
p → Fm

p are maps then we have

D(F ◦G mod I) = DF.DG mod I

where I is the ideal (x1 − x1, x2 − x2, . . . , xn − xn).
With the above definition of the Jacobian of a function we now restate an analogue of

JC on prime fields as follows.

Conjecture 2 (JC on Fp). The function F : Fn
p → Fn

p is invertible if

det JF = c 6= 0 (1)

where c is a constant (in Fp).

We call (1) the Jacobian condition on Fp.

2.1 Single variable case of JC

First we explore whether this modified definition of a derivative has a chance of getting the
JC to be true at least for n = 1. Let f be a function in Fp. Then f can be represented by
a polynomial function of degree at most p− 1. Let this be denoted

f(x) = a0 + a1x+ . . .+ ap−1x
p−1

where ai and x belong to Fp. The formal differential of f is then represented by

Df(x) = a1 + aiix
i−1 mod p

Hence the Jacobian condition Df = c 6= 0, forces co-efficients ai to satisfy

a1 6= 0 aii mod p = 0
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for i = 2, . . . , (p − 1). However this implies ai mod p = 0 since i < p. Hence all functions
satisfying the Jacobian condition are affine with a1 6= 0. Consider the function g whose
polynomial representative is

g(X) = −a0a−1
1 + a−1

1 X

which is also affine. Then it can be easily verified by composing the polynomial function
f(g(x)) representing f ◦ g that

f(g(x)) = g(f(x)) = x

Hence g is the (unique) inverse of f . We have thus proved

Proposition 1. JC is true for n = 1 over prime fields.

Invertible polynomial functions in Fq are studied in [3] and are called ”permutation
polynomials”. Necessary and sufficient conditions are known for such polynomials. However
these conditions are purely algebraic equivalences of transformational properties of invertible
polynomials and none of these appear to result in an analogous condition such as the
Jacobian condition. The statement of the Jacobian condition on the other hand is a in
terms of co-efficients of the polynomial. Such a statement is very important from the point
of view of computational verifiability and complexity hence is of a different nature. The JC
is also a generalized restatement of the Roll’s theorem in real analysis. The studies relating
to JC such as in [2] dont seem to have crossed paths or have anything common with the
theory of permutation polynomials.

2.2 Computational problems

Apart from the theoretical problem of proving the JC in the prime field case, there is the
computational problem of verifying the JC on finite fields as well as what is the complexity
of computing the inverse function. We formally state these computational problems.

Problem 1 (Verifying JC). Develop a computational algorithm to verify the JC over Fn
p .

Develop analysis of complexity of this problem as a function of p and n. Determine the
complexity class of this problem. If this problem is in complexity class P we can say that
verifying the JC is a feasible problem.

Problem 2 (Construction of invertible functions). Give an algorithm to output a complete
classification of invertible functions F and their inverses G. Develop an algorithm which will
output all functions F which satisfy JC and their inverses G when the such exist. Analyze
the complexities of these algorithms. If the former is in P we can consider the problem of
constructing invertible functions to be solvable.

3 Defining JC over the ring of Boolean functions

Let B be the two element binary field (or the Boolean algebra). The Boolean functions
f : Bn → B correspond to the ring R = F2[X1, . . . , Xn]/I where I = (X2

1 ⊕X1, . . . , X
2
n ⊕

Xn). R is a Boolean ring (elements satisfy the equation w2 = w) under the operation of
addition modulo 2 (XOR) denoted ⊕, multiplication (AND) denoted by . and with 0 and

4



1 as respective identities. The composition of Boolean functions is obtained by composing
polynomial representatives and reducing modulo I. For n = 2, ring R has only functions
represented by a0 ⊕ a1X ⊕ a2Y ⊕XY where ai are 0 or 1. The only constant function in
R is the constant 1.

3.1 Case n = 2

We now show the verification of JC for the simplest case n = 2. The Boolean functions in
this case have representatives a0 ⊕ a1X ⊕ a2Y ⊕ a3XY . Let F = [f1, f2] where

f1(X,Y ) = a⊕ bX ⊕ cY ⊕ dXY
f2(X,Y ) = e⊕ fX ⊕ gY ⊕ hXY

The Jacobian matrix is

JF =

[
b⊕ dY c⊕ dX
f ⊕ hY g ⊕ hX

]
Hence det JF = 1 iff

bg ⊕ fc = 1
bh⊕ fd = 0
ch⊕ gd = 0

Solving these equations over B it turns out that only the following pair of functions are
possible for fi for F satisfying the JC. (Maps F obtained by permuting fi are treated as
identical). The JC does not depend on constant terms so a, e can be arbitrary. So we list
the other three co-efficients.[

b c d
f g h

]
=

[
0 1 0
1 0 0

] [
1 0 0
∗ 1 0

]
In effect the above computation proves

Proposition 2. If a function F : B2 → B2 satisfies the Jacobian condition

det JF = 1

then F is affine (i.e. the representatives of the components fi are affine) of the form

F =

[
a
e

]
⊕A

[
X
Y

]
where

detA = 1

Hence such functions F have inverses

G = A−1

[
a⊕X
e⊕ Y

]
The proposition shows that JC is true for K = F2 and n = 2. However this is verification

of the JC in this special case and was possible due to the fact that the constraint det JF = 1
could be solved easily as a computational problem. For n > 2 such a computation is a
satisfiability problem of rapidly increasing complexity and has not been achieved even for
n = 3.
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4 Conclusion

The JC is proved for functions F : Bn → Bn for n = 1, 2 and for functions F : Fp → Fp for p
prime. In all these cases functions F satisfying the Jacobian condition detJF = const 6= 0
mod p are affine.
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