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1 Introduction

Developments in solving equations over Boolean algebras and their applications are as old
as George Boole’s monograph [1], while Shannon pioneered applications of Boolean logic
to switching circuits. Boolean equations and their solutions are of central importance to
many problems across Sciences such as Chemistry, Biology or Medicine while traditionally
Boolean problems arise in domains such as verification and design of logic circuits, software
verification and Artificial Intelligence in Computer Science as well as Decision Sciences such
as Operational Research. Search for assignments of Boolean variables over the two element
Boolean algebra B0 = {0, 1} for which given Boolean constraints hold true or function
has specified value are known as satisfiability SAT problems and has lead to development
of efficient algorithms such as DPLL and other approaches [4, 5] over past half century.
Boolean equation solving methods of [3, 2] on the other hand are applicable for solving
equations over general Boolean algebras. These two developments have largely evolved in-
dependently. The potential of Boolean equation solving methods is yet to be fully explored
as is apparent from literature [4, 5]. Similarly development of efficient and scalable parallel
computational algorithms for the problem of solving systems of Boolean equations in large
number of unknowns over large number of processors is yet to mature fully. In this report
we shall explore utilization of expansion in terms of orthonormal systems [2] and solutions
of Boolean equations in orthonormal variables developed in [3]. Boolean equations in or-
thonormal variables are always linear in either the Boolean disjunction + (denoting OR)
or the ring operation ⊕ (denoting XOR). Hence these are rich systems for algorithmic
study. However it is not clear which applications involve orthonormal variables naturally.
In this report we explore one indirect application that of studying consistency of Boolean
equations.

1.1 Motivation

One of the principal methods of solving Boolean equations over general Boolean algebras is
the method of elimination of variables [3, 2]. An elimination of one variable x in a Boolean

1



equation f(x) = 0 (respectively f(x) = 1) results from consistency condition for the equa-
tion in terms of (Shannon) expansion of f(x) with respect to x and x′. Elimination of x also
gives rise to inequalities on x in terms of Boolean functions in the remaining variables. Thus
elimination of any number of variables is possible in one equation. Hence elimination theory
in Boolean analysis is not comparable with well known elimination theory over fields known
in algebra where elimination of k variables requires k independent equations. Moreover the
x and x′ are special cases of more general systems of functions (called orthonormal) in the
Boolean algebra of functions. Our aim in this article is to explore generalization of elimi-
nation method with respect to expansion in terms of more general orthonormal functions
(in many variables).

Elimination based methods of solving Boolean equations, although applicable for general
Boolean algebras, are equivalent to resolution of clauses in CNF-SAT problems. Resolutions
lead to requirement of high memory and hence have not been considered very suitable for
sequential computation. Some of the deficiencies of elimination are pointed out in [5].
However it is important to realize that there is as yet no final word on scalability of parallel
algorithms for solving Boolean equations. Algorithms which may not be known to be fast
or memory efficient when executed sequentially might have superior properties suitable for
parallel computation. Hence for solving large data problems using large number of parallel
processors it is not the sequential speed or memory but the scalability of the algorithm under
decomposition that is of prime importance and a well scalable algorithm can eventually give
fast and efficient solution for such large sized problems when computations are distributed
over large number of processors. Once the problem is decomposed the memory requirement
for resolution can also be brought down considerably. Most of the Boolean analysis problems
arising in applications also have inherent features of local connectivity due to which only
local variables appear together in clauses. (There can be notable exceptions of SAT problems
expressing equivalent number theory problems).

It is for this reason that search for new methods of solving Boolean equations is impor-
tant. Technology of parallel computers has made rapid strides in recent time and computers
with large memories and number of processor reaching up to million shall be available at
affordable price. Hence in the near future methods of solving large sized challenge prob-
lems which can scale up with good efficiency even for large number of processors shall gain
importance as much as (or perhaps more than) fast sequential methods workable for small
data or scalable only over small number of processors. Scalability with respect to data size
and number of processors should also give a practical measure to compare two algorithms
both of which are likely to have exponential order of complexity (since the SAT problem is
NP complete) asymptotically but are always used for solving finite size problems.

1.2 Notations and background

We shall follow background on elimination theory of Boolean equations, general theory
of Boolean functions and orthonormal functions from [3, 2]. However some changes in
notations are made in view of recent literature [5] and SAT methodologies [4]. Denote
the Boolean algebra of functions f(x1 . . . xn) in n variables with co-efficients in a Boolean
algebra (B,+, .,′ , 0, 1) by B(n) which consists of the set {B, x1, . . . , xn} and all functions
defined by Boolean expressions developed using formal operations (+, .,′ ) which satisfy
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rules of a Boolean algebra. At times for clarity, we also denote the set of variables by
X and this algebra of functions as B[X]. Boolean functions are precisely those maps
between Bn → B which have well known minterm canonical form, conjunctive normal form
(CNF) and disjunctive normal form (DNF). A Boolean ring associated to B is denoted by
(R,⊕, ., 0, 1) with well known relations between + and ⊕ (also commonly known as OR
and XOR in the two element Boolean algebra denoted B0 = (0, 1,+, .,′ )). We denote the
Boolean ring associated to B(n) by R(n). The Boolean functions Rn → R are precisely
those that have an algebraic normal form (ANF). We refer to [2] for background on Boolean
functions.

1.3 Boole-Shannon expansion, consistency and elimination theory

We now briefly touch upon the background on elimination theory. Let f in B(1) be a
Boolean function in one variable over B. Then f has following representations called Shan-
non expansions

f(x) = f(1)x+ f(0)x′

f(x) = [f(0) + x][f(1) + x′]
(1)

see [2] for proof. These were proposed by both Boole and Shannon (hence we call these
Boole-Shannon expansions). The Boolean equation

f(x) = 0

is said to be consistent if there is an a in B such that f(a) = 0. The necessary and sufficient
condition for consistency [3] of this equation is that

f(0)f(1) = 0 (2)

When the equation is consistent the set S = {f(1)+pf(0)′} is the set of all solutions of this
equation where p is an arbitrary element of B. The equation f(0)f(1) = 0 is independent
of the variable x and is called the disjunctive eliminant of f . The solutions x of f(x) = 0
satisfy

f(0) ≤ x ≤ f(1)′ (3)

On similar lines, it follows that if f(x) = 1 is consistent then each of (f(0) + x) = 1,
(f(1) + x′) = 1 hold this implies x′ ≤ f(0) and x ≤ f(1) hence

f(0) + f(1) = 1 (4)

and we recover the above inequality on x. Conversely if this identity holds then x = f(1) is a
solution hence this condition is necessary and sufficient. These two expansions of a function
f(x) show that consistency conditions for f(x) = 0 (or f(x) = 1) are new Boolean identities
to be be satisfied in which x is eliminated. We shall extend this process of elimination over
what are called orthonormal functions.

More generally a system of m Boolean equations n variables

fj(xi, . . . , xn) = gj(x1, . . . , xn)
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j = 1, . . . ,m where fj , gj are Boolean functions in B(n) is said to be consistent if there
exist elements a1, a2, . . . , an in B such that all the equations are satisfied. Consistency of
such a system of equations is equivalent to that of the single equation∑

j

(f ′jgj + fjg
′
j) = 0

1.4 Orthonormal systems and expansions

In a Boolean algebra B a set of elements {a1, . . . , am} is called orthogonal (OG) of order m
if aiaj = 0 for i 6= j. An OG set is called orthonormal (ON) if

m∑
i=1

ai = 1 (5)

In B(n) we consider OG and ON functions of n-variables. The system of minterms in
n-variables in B(n) is defined as

mA
4
= XA = xα1

1 xα2
2 . . . xαn

n (6)

for A = (α1 . . . αn) in {0, 1}n where xα is defined by x0 = x′, x1 = x. Set of all minterms
is a 2n order ON system in n variables. However following examples show ON systems of
(polynomial) orders other than 2n in three variables x, y, z in B3,

order system
4 {x, x′y, x′y′z, x′y′z′}
3 {xyz, x′yz + xy′z + xyz′, x′y′z + xy′z′ + x′yz′ + x′y′z′}

In B(n) functions which are products of a subset of n variables and their complements are
called terms. For instance x′y, xy′z, y′z′ are terms in B(3). Thus the first ON system above
is a system of ON terms while the second one is not.

We can also define dual notions of OG and ON systems. Call ai co-OG if ai + aj = 1
for i 6= j and co-OG set as co-ON if

m∏
i=1

ai = 0

If {a1, . . . , am} are OG (respectively ON) then {a′1, . . . , a′m} are co-OG (respectively co-ON).

1.5 Orthonormal expansion

Consider the Boolean algebra B(n) of functions f(x1, . . . , xn) : Bn → B of n variables
over a Boolean algebra B. We denote these in short notation as f(X), denoting variables
{x1, x2, . . . , xn} by X. Let {φ1(X), . . . , φm(X)} be a system of ON functions. Then f(X)
has a representation

f(X) =
∑
i

ai(X)φi(X) (7)
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iff ai(X) satisfy the relations

f(X)φi(X) = ai(X)φi(X)

See [2, Proposition 3.14.i] for the proof. ON expansions are useful in decomposing compu-
tations due to following properties [2]. If g(X) has expansion

g(X) =
∑
i

bi(X)φi(X)

then f + g, fg, f ′, f ⊕ g have expansions

f + g =
∑

i(ai + bi)φi
fg =

∑
i aibiφi

f ′ =
∑

i a
′
iφi

f ⊕ g =
∑

i(ai ⊕ bi)φi

If g is a function of one variable over B and f : Bn → B is a function of n-variables with
above expansion in an ON system then the composition g(f(X)) has expression

g(f(X)) =
∑
i

g(ai(X))φi(X)

Similar compositions in multiple variables are also true as shown in [2, chapter 3]. These
expressions show a far reaching role for ON systems in Boolean analysis and construction
of computational algorithms for solving Boolean equations.

1.6 Expansion in ON terms

Consider now a special kind of expansion when φi is a system of ON terms in n variables
X.

ti(X) = xai1i1 x
ai2
i2 . . . xaikik

for (ai1, . . . , aik) to be k components of A in {0, 1}n then the expansion of f(X) in ti(X) is

f(X) =
∑
i

aiti (8)

where ai = f(ti(X) = 1), see [2, Theorem 3.15.1]. The term f(ti(X) = 1) is also called the
ratio denoted by f/ti. Hence when the ON system is minterms in X then ai are constants
in B. This expansion also gives a way to express the variables in terms of any ON system
of terms ti as follows.

xi =
∑
j

αjtj(X) (9)

where αj = 1 when xj belongs to tj , αj = xi when xi does not belong to tj and 0 when x′i
belongs to tj . Such expansion is useful mainly when ti are minterms as αj are constant 0
or 1 when tj are minterms since either x′i is present in tj or xi is present in tj . (Similarly it
follows that if ξi is a co-ON system of minterms such as

ξi(X) = xa11 + xa22 + . . .+ xann
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for A = (a1, . . . , an) in {0, 1}n we can write

xi =
∏
j

(aj + ξj(X)) (10)

where aj = 0 when xi belongs to ξj and 1 otherwise). Expansion of a function (8) in ON
terms can be seen as a generalization of the well known Shannon expansion.

2 Consistency with respect to ON systems of functions

We now come to our problem. Let B be a Boolean algebra and f : Bn → B be a Boolean
function of n variables as described in the previous section. Our main problem is to deter-
mine the condition for consistency of the Boolean equation

f(X) = 0 (11)

in terms of special ON system t1, . . . , tm of terms denoted by T in B(n). We shall derive
such conditions for a special class of functions f whose expansion in T involves constant
co-efficients i.e. in B. We identify this class of functions by

Definition 1 (Class B(T )). Let T be an ON system of functions in B(n). A function f in
B(n) is said to be of class B(T ) if f(X) has expansion

f(X) =
∑
i

aiti(X) (12)

where ai belong to B. Thus when T is a system of ON terms then f belongs to B(T ) when
f(X)/ti are constants in B for all i.

Associated to the equation (11) for functions of class B(T ) we also need to consider the
equation ∑

i

aiχi = 0 (13)

over B in terms of ON unknown variables χi in view of expansion in ON terms.

2.1 Consistency of special ON systems

We now consider special ON systems in B(n) and develop results on consistency of systems
of equations defined by their values. These two special systems are

1. ON terms of order n + 1 in n variables. For a fixed indexing of variables x1, . . . , xn,
define

t1 = x1
ti = x′1 . . . x

′
i−1xi for i = 2, . . . , n

tn+1 = x′1 . . . x
′
n

(14)

2. ON minterms in n variables. These are ON terms of order 2n denoted as mA(X) = XA

for A in {0, 1}n defined in (6).
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First we observe consistency conditions of systems of equations defined by special ON
terms above.

Proposition 1. Let {β1, . . . , βn+1} be elements of B and T be an ON system (14) of terms
of order n+ 1 in B(n). Then the system of equations

ti(X) = βi, i = 1, . . . , n+ 1 (15)

is consistent iff {β1, . . . , βn+1} is an ON system of order n+ 1 in B.

Proof: Necessity is obvious. Let the constants {βi} be an ON system of order n + 1
in B. Then βi satisfy for i < j, βiβj = 0 which is βj ≤ β′i. Hence βj ≤ β′1 . . . β

′
j−1 which

implies
β′1β2 = β2

β′1β
′
2β3 = β3

...
...

β′1 . . . β
′
n+1 = 0

The n+ 1 order system of ON terms ti defined in (14) the equations ti = βi are equivalent
to

x1 = β1
x′1x2 = β2

x′1x
′
2x3 = β3

...
...

x′1 . . . xn = βn

From the relations satisfied by βi above it follows that the above equations are satisfied by
xi = βi for i = 1, . . . , n while

tn+1 = x′1x
′
2 . . . x

′
n

= β′1β
′
2 . . . β

′
n

= βn+1

holds as βi are ON. Thus the system (15) is consistent. 2

Next we show similar consistency condition for equations in minterms.

Proposition 2. Let {β1, . . . , βN} be N = 2n elements of B and T be an ON system of
minterms in n variables in B(n). Then the system of equations

ti(X) = βi, i = 1, . . . , N (16)

is consistent iff {β1, . . . , βN} is an ON system in B.

Proof : Necessity is obvious. If the equations above hold, the expressions for variables
xi in terms of ti given by

xi =
∑
tj≤xi

tj

give solutions

xi =
∑

j,tj≤xi

βj

where the sum is taken over all indices j such that the minterms tj ≤ xi i.e. xi appear in
terms tj . This proves that the equations are consistent. 2
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2.2 Consistency of an equation in terms of expansion in special ON sys-
tems

Now consider a Boolean function f(X) in B(n) of class B(T ) where T is an ON system of
order N of any of the two special types above (hence N is either n+ 1 or 2n). Consider the
representation of f(X) in T

f(X) =
∑
i

aiti (17)

Theorem 1. Following statements are equivalent for a function defined in (17)

1. The equation f(X) = 0 is consistent

2. The associated equation (13) which is∑
i

aiχi = 0

in ON variables χi is consistent over B.

3.
∏N
i=1 ai = 0

4. A solution for ON variables is

χ1 = β1
4
= a′1

χi = βi
4
= a1a2 . . . ai−1a

′
i i = 2, . . . , N − 1

χN = βN
4
= a1a2 . . . aN−1

5. A solution for variables X in the two cases is

(a) Case N = n+ 1
xi = a′i i = 1, . . . , n

(b) Case N = 2n

xi =
∑

j,tj≤xi

βj

Proof : 1⇒2. If f(X) = 0 is consistent, since f is in B(T ) there exists an n-tuple X = Γ
in Bn such that

f(Γ) =
∑
i

aiti(Γ) = 0

Thus the associated system in ON variables has a solution χi = ti(Γ).
2⇒3. If χi = βi is a solution for the ON variables χi then βi is an ON system in B and

aiβi = 0 for all i. Thus
βi ≤ a′i∀i

⇒
∑

i βi ≤
∑

i a
′
i

⇒
∑

i a
′
i = 1

which is 3.
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3⇒4. If ai satisfy above condition, the constants βi defined are ON and satisfy the
equation for variables χi.

4⇒5. Since βi are ON the system ti(X) = βi for i = 1, . . . , N is consistent from
propositions (1) or (2) as appropriate for N . Solutions of xi as given are derived in the
proofs of propositions (1) and (2).

5⇒1. The solutions of xi obtained satisfy∑
i

aiti(X) = 0

which shows xi given is a solution of f(X) = 0. 2

2.3 Elimination interpretation

The consistency theorem above for the equation f(X) = 0 is a generalization of the consis-
tency condition of an equation of one variable f(x) = 0 where f(x) is a Boolean function
of one variable in the sense that the ON system in one variable x, x′ in B(1) is generalized
in terms of expansion of f in B(n) in terms of special ON systems. Consider now a func-
tion f(X,Y ) in B(n + m) where X = {x1, . . . , xn}, Y = {y1, . . . , ym} are indexed sets of
variables. Then f can be considered as an element of B̃(n) where B̃ is the Boolean algebra
B(m) of functions in m-variables. Let T denote one of the ON system of terms ti(X) in X
and assume that f belong to the class B̃(T ). For such functions we have ON expansion

f(X,Y ) =
∑
i

ai(Y )ti(X)

From the above consistency condition there follows

Corollary 1. The equation
f(X,Y ) = 0

is consistent iff ∏
i

ai(Y ) = 0

is consistent.

Proof : Let the equation f = 0 be consistent, then there exist a solution X = Γ in Bn

and Y = ∆ in Bm which satisfies the equation. Hence the equation∑
i

ai(∆)χi = 0

is consistent over B with a solution χi = ti(Γ). Hence from the above theorem we have∏
i

ai(∆) = 0

which implies that ∏
i

ai(Y ) = 0
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is consistent. Conversely if this equation is consistent with a solution ∆ the the above
equation in ON variables χi is consistent. For an ON solution βi of these χi variables we
get consistency of the ON system ti(X) = βi proved in the propositions 1, 2. This implies
that the equation ∑

i

ai(∆)ti(X) = 0

is consistent in X variables or what is the same, f(X,∆) = 0 is consistent which implies
f = 0 is consistent. 2

From this corollary we get the interpretation of elimination of X variables since the
consistency of f is equivalent to that of

ONelimD(f,X)
4
=

∏
i

ai(Y ) = 0

which is a function of only Y variables. We can call ONelimD(f,X) the ON disjunctive
eliminant of f following the notations of [2].

2.4 Choice of special ON system

Consider a Boolean function f(X) of n variables in B(n). It would be useful to find out an
indexing of variables X as {x1, . . . , xm, xm+1, . . . xn} such that for the special ON system
T of order m + 1 given in (14) in {x1, . . . , xm} is such that f belongs to B̃(T ) where
B̃ = B[xm+1, . . . , xn]. Clearly there would be many such systems while an optimal one can
be considered as that system with largest m. An algorithm for choosing such indexing over
B0 is as follows.

Algorithm 1. Input : f(X) in B0(n) given in DNF with the set of disjunctive terms {Dk}.

1. Assign x1 arbitrary set t1 = x1.

2. Let X1 denotes set of variables in Di/t1 union {x1}. Choose x2 arbitrary in X −X1.
set t2 = x′1x2

3. Having chosen variables upto xk−1 and terms tk−1. Let Xk−1 as the variables in
Di/tk−1 union {xk−1}. Choose xk in X −X1 ∪ . . . ∪Xk−1. Set tk = x′1x

′
2 . . . x

′
k−1xk.

4. Repeat untill no variable is available to choose after the last step for choice of xk or
X = X1 ∪ . . . Xk−1.

5. Set tk+1 = x′1 . . . x
′
k.

While the m variables are being chosen to form an ON system of m + 1 order, the
expansion of the function f can also be computed in ON terms ti by computing the co-
efficients in the expansion

ai =
∑
j

(Dj/ti)

10



In the notation of the last section on elimination interpretation, let X = {x1, . . . , xm} and
Y denote the remaining variables. The eliminant

ONelimD(f,X) =
∏
i

ai

the ON eliminant of f is a new Boolean function in B0[Y ]. The algorithm can be reapplied
to find expansion of the eliminant above in Y variables to simplify further computations
for consistency. A full algorithm for consistency based on these ideas shall be written in a
separate report.

2.5 Application of ON expansion to systems of equations

Up till now we considered consistency condition for a single equation f = 0 in terms of
ON expansion of f in ON terms T by computing the eliminant of f with respect to T . In
principle this theory is sufficient for deciding consistency of a system of equations

fj = gj

where j = 1, . . . ,m where fj , gj are Boolean functions in n variables in B(n) by converting
the consistency of the system in terms of a single Boolean equation

F =
∑
j

(fj ⊕ gj) = 0

However, from computational point of view it is important to realize as much parallelism in
computation as possible. Expansion in ON terms suggests one way of achieving this. For
this purpose consider expansions in terms of the ON system T

fj =
∑

k ajktk
gj =

∑
k bjktk

Then the eliminant of the system is given by∏
k

∑
j

(ajk ⊕ bjk)

such a product of sum expression can be fruitfully utilized for decomposition of the compu-
tations involved by utilizing the functions fj , gj in a DNF and carrying out operations in
terms of the disjunctive terms.

3 Conclusions

A condition for consistency of a Boolean equation f(X) = 0 is shown to be possible in
terms of expansion of the Boolean function f in special ON systems in B(n). The condition
is expressed in terms of consistency of an equation in the eliminant of f with respect to
the ON system. The formula for a special solution of the variables is also constructed. An
algorithm for choice of variables for construction of the special ON system of order m + 1
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in m variables is developed. The expansion in ON terms can be seen as a generalization
of the well known Shannon expansion. Similarly the consistency condition can be seen as
an extension of the single variable elimination method. ON expansion is a technique which
can be useful for parallel computation of consistency checking and Boolean operations of
functions in large number of variables. Such expansions can be valuable for computations
with systems of Boolean equations without converting them to a single equation.
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