
Use of Scilab for SVD, linear algebra

Madhu N. Belur

Control & Computing, Department of Electrical Engineering, IITB
Email: belur@iitb.ac.in

November 2019

Codes and other material (for this workshop):
www.ee.iitb.ac.in/∼belur/scilab

Learning material: www.spoken-tutorial.org:
28 Scilab tutorials: each in upto 16 languages



Outline

Vector/Matrix syntax

Eigenvalues, singular values

Solving Ax = b

Linear independence/dependence

How to read in data from a file, define matrix, etc.

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Introduction

Scilab is free and open source (unlike expensive/proprietary:
Matlab)

Matrix/loops syntax is same as for Matlab

Accuracy and computation time: same: both use (FOSS)
Lapack/Linpack within

In many ways, Scilab is better

This talk focus: linear algebra, SVD, solving Ax=b

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Introduction

Scilab is free and open source (unlike expensive/proprietary:
Matlab)

Matrix/loops syntax is same as for Matlab

Accuracy and computation time: same: both use (FOSS)
Lapack/Linpack within

In many ways, Scilab is better

This talk focus: linear algebra, SVD, solving Ax=b

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Defining a matrix

A=[1 3 4 6]

B=[1 3 4 6;5 6 7 8]

size(A), length(A), ones(A), zeros(B), zeros(3,5)

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



determinant/eigenvalues/trace

A=rand(3,3)

det(A), spec(A), trace(A)

sum(spec(A))

if sum(spec(A))==trace(A) then

disp(’yes, trace equals sum’)

else

disp(’no, trace is not sum ’)

end

prod(spec(A))-det(A)

Note: in numerical computation, all values are ‘floating point’:
Hence == is not the right way to check. Use ‘norm’.

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



determinant/eigenvalues/trace

A=rand(3,3)

det(A), spec(A), trace(A)

sum(spec(A))

if sum(spec(A))==trace(A) then

disp(’yes, trace equals sum’)

else

disp(’no, trace is not sum ’)

end

prod(spec(A))-det(A)

Note: in numerical computation, all values are ‘floating point’:
Hence == is not the right way to check. Use ‘norm’.

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Rank, SVD

rank(A) svd(A)

[u, s, v ] = svd(A)

check u’-inv(u) u*s*v-A

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Solving Ax = b

For a matrix A, and vector b:
linsolve(A,b) gives

‘compatible’ x (if exists) such that Ax + b = 0

[x,kerA] = linsolve(A,b) // to get all

solutions

If no ‘compatible’ one exists, gives

‘‘Warning: Conflicting linear constraints’’

A\b
x = A\b

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Solving Ax = b

For a matrix A, and vector b:
linsolve(A,b) gives

‘compatible’ x (if exists) such that Ax + b = 0

[x,kerA] = linsolve(A,b) // to get all

solutions

If no ‘compatible’ one exists, gives

‘‘Warning: Conflicting linear constraints’’

A\b
x = A\b

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Rank, solvability, linear dependence

A = [1 2;3 6] // A has two ROWS

b = [1 3]’ // b is a column vector

Check rank(A), and rank([A b])

Adding column: rank: might increase, but CANNOT decrease

rank(A) and rank([A b]) are same

m
b is some linear combination of A

m
Ax = b has a solution x

Check for: A = [1 2;3 6]; b = [1 2]’

Check for: A = [1 2;0 6]; b = [1 2]’

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Rank, solvability, linear dependence

A = [1 2;3 6] // A has two ROWS

b = [1 3]’ // b is a column vector

Check rank(A), and rank([A b])

Adding column: rank: might increase, but CANNOT decrease

rank(A) and rank([A b]) are same

m
b is some linear combination of A

m
Ax = b has a solution x

Check for: A = [1 2;3 6]; b = [1 2]’

Check for: A = [1 2;0 6]; b = [1 2]’

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Inbuilt parameters

Scilab provides inbuilt parameters: Need % to get them

%pi for π

%i for imaginary unit i

%j for imaginary unit j

Verify: %pi - 3.14

Verify: %iˆ2

Avoid defining your own variables starting with %

%s, %z, %eps

13e14 = 13E14 = 13E+14 = 1.3D+15 = 1.3× 1015

D ≡ Decimal

190e-37 = 19E-36 = 1.9D-35
1.9× 10−35

Check value of %eps: machine precision: relative accuracy

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Inbuilt parameters

Scilab provides inbuilt parameters: Need % to get them

%pi for π

%i for imaginary unit i

%j for imaginary unit j

Verify: %pi - 3.14

Verify: %iˆ2

Avoid defining your own variables starting with %

%s, %z, %eps

13e14 = 13E14 = 13E+14 = 1.3D+15 = 1.3× 1015

D ≡ Decimal

190e-37 = 19E-36 = 1.9D-35
1.9× 10−35

Check value of %eps: machine precision: relative accuracy

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Inbuilt parameters

Scilab provides inbuilt parameters: Need % to get them

%pi for π

%i for imaginary unit i

%j for imaginary unit j

Verify: %pi - 3.14

Verify: %iˆ2

Avoid defining your own variables starting with %

%s, %z, %eps

13e14 = 13E14 = 13E+14 = 1.3D+15 = 1.3× 1015

D ≡ Decimal

190e-37 = 19E-36 = 1.9D-35
1.9× 10−35

Check value of %eps: machine precision: relative accuracy

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Inbuilt parameters

Scilab provides inbuilt parameters: Need % to get them

%pi for π

%i for imaginary unit i

%j for imaginary unit j

Verify: %pi - 3.14

Verify: %iˆ2

Avoid defining your own variables starting with %

%s, %z, %eps

13e14 = 13E14 = 13E+14 = 1.3D+15 = 1.3× 1015

D ≡ Decimal

190e-37 = 19E-36 = 1.9D-35
1.9× 10−35

Check value of %eps: machine precision: relative accuracy

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Defining polynomials

s=poly(0,’s’); Same as: s=poly(0,’s’,’roots’)

p=2+3*s+s^2; Alternatively: p=poly([2 3 1],’s’,’coeff’)

roots(p)

a = [1 2 3]

w=poly(0,’w’)

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



Defining your own function

Often we need to have our own function

Good for modular and systematic design of large/complex
programs:

function out1 = some function name(inp1)

// Avoid using a name that is ALREADY a function

// Recommended to have some explanatory text

// Recommended to give an indent

out1 = inp1^3

endfunction

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



This talk available at

Can have many functions all in one file:

Execute that file once and these functions are in the memory.

Re-execute to overwrite (if functions have been changed)

Some codes and other material (for this workshop):
www.ee.iitb.ac.in/%7Ebelur/scilab

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



This talk available at

Can have many functions all in one file:

Execute that file once and these functions are in the memory.

Re-execute to overwrite (if functions have been changed)

Some codes and other material (for this workshop):
www.ee.iitb.ac.in/%7Ebelur/scilab

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



SciNotes editor and exercise

Use SciNotes editor: syntax highlighting, quick execute, etc.

Construct (full) ‘incidence matrix’ A for the graph below

Find rank, kernel, image of A
(see help colcomp, help rowcomp). (Note use of tolerance)

Check that any row of A is in span of other rows

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



SciNotes editor and exercise

Use SciNotes editor: syntax highlighting, quick execute, etc.

Construct (full) ‘incidence matrix’ A for the graph below

Find rank, kernel, image of A
(see help colcomp, help rowcomp). (Note use of tolerance)

Check that any row of A is in span of other rows

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra



SciNotes editor and exercise

Use SciNotes editor: syntax highlighting, quick execute, etc.

Construct (full) ‘incidence matrix’ A for the graph below

Find rank, kernel, image of A
(see help colcomp, help rowcomp). (Note use of tolerance)

Check that any row of A is in span of other rows

Madhu Belur, CC group, EE, IITB Scilab/Linear Algebra


