The Cost of Security in a Blockchain

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in
Department of Electrical Engineering Indian Institute of Technology Bombay

September 26, 2018

Cryptocurrency Transaction Workflow

Double Spending Problem

- Alice pays Bob n coins for a cake
- Alice uses the same n coins to pay Charlie for a book

The Bitcoin Blockchain

A public database to store all transactions which is replicated by many network nodes

Block and Header Formats

Block Header	Version Number
	Hash of Previous
Number of	Block Header
Transactions n	Hash of
Coinbase	Transactions
Transaction	Timestamp
Regular	Threshold
Transaction 1	Nonce
Regular Transaction 2	
引	Block Header Fields
Regular Transaction $n-1$	

- Hash = Output of cryptographic hash function

Cryptographic Hash Functions

- Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs

Input	SHA-256 Output
bitcoin0	2277efd2e9051a1978682cad7a111876031f7fcdb9a2a06b5fdeee160dd8f34e
bitcoin1	dbdbac0b3072d7677fc94eebaf8eba9e81e5c3b7de6899dae12c98d6799b065a
bitcoin2	1ed7259a5243a1e9e33e45d8d2510bc0470032df964956e18b9f56fa65c96e89
bitcoin3	0c5582329503f93b4b243a986551d9e22e46ee9ba681d687078cbcbad0c7d023
bitcoin4	$0 a 49508 b f 91 a c 4 f 98 e 6 a 01 b 575 e 1 a 3 f 200 a 5 d 9 a 03 d 00219 a e a 52 b 15 b 064 c d f 50$
bitcoin5	de6206bd52f4228ebc556c85b26e3582fa141f8839a11d2a2ca761d0f7e24ec3
bitcoin6	e1abb7b46d14bb2c3e13208ebc9790ab847f6b5265adbf154d4200b513359e22
bitcoin7	c07bed0fae2067f2ed35cc443d97aeacbaf0b59dcbd619f76c75477690b82d3b
bitcoin8	8ecc8a5ebc2a99db8e950c29242e7052ae2930cd60258176efe36750a4e33170
bitcoin9	38ab2bcafbf65eb6204162d28082ad7616f2a66f20b27696262e3842b3712d0b

- SHA-256 = NIST approved CHF with 256-bit outputs

Cryptographic Hash Functions

- Easy to compute but difficult to invert
- Collision-resistant
- Pseudorandom outputs

Input	SHA-256 Output
bitcoin0	$2277 e f d 2 e 9051 a 1978682 c a d 7 a 111876031 f 7 f c d b 9 a 2 a 06 b 5 f d e e e 160 d d 8 f 34 e$
bitcoin1	dbdbac0b3072d7677fc94eebaf8eba9e81e5c3b7de6899dae12c98d6799b065a
bitcoin2	1ed7259a5243a1e9e33e45d8d2510bc0470032df964956e18b9f56fa65c96e89
bitcoin3	$0 c 5582329503 f 93 b 4 b 243 a 986551 d 9 e 22 e 46 e e 9 b a 681 d 687078 c b c b a d 0 c 7 d 023$
bitcoin4	$0 a 49508 b f 91 a c 4 f 98 e 6 a 01 b 575 e 1 a 3 f 200 a 5 d 9 a 03 d 00219 a e a 52 b 15 b 064 c d f 50$
bitcoin5	de6206bd52f4228ebc556c85b26e3582fa141f8839a11d2a2ca761d0f7e24ec3
bitcoin6	e1abb7b46d14bb2c3e13208ebc9790ab847f6b5265adbf154d4200b513359e22
bitcoin7	c07bed0fae2067f2ed35cc443d97aeacbaf0b59dcbd619f76c75477690b82d3b
bitcoin8	8ecc8a5ebc2a99db8e950c29242e7052ae2930cd60258176efe36750a4e33170
bitcoin9	38ab2bcafbf65eb6204162d28082ad7616f2a66f20b27696262e3842b3712d0b

- SHA-256 = NIST approved CHF with 256-bit outputs
- At a billion outputs per second, 78 billion years required to calculate 2^{100} outputs

Who Adds Blocks?

- Mining $=$ Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

Who Adds Blocks?

- Mining = Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256 -bit value like $0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \ldots \text { FFFFF }}_{48 \text { times }}$

Who Adds Blocks?

- Mining = Process of adding new blocks to the blockchain
- Nodes which want to perform transactions broadcast them
- Miners collect some of these transactions into a candidate block

- Threshold encodes a 256 -bit value like $0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF ...FFFFF }}_{48 \text { times }}$
- Miner who can find Nonce such that

can add a new block

Mining Difficulty and Rewards

- Why is mining hard?
- Brute-force search is the only way to find suitable nonce
- Target area is small compared to output space of SHA256

$$
\operatorname{Pr}[\text { Success in single trial }] \approx \frac{\text { Threshold }}{2^{256}}
$$

Mining Difficulty and Rewards

- Why is mining hard?
- Brute-force search is the only way to find suitable nonce
- Target area is small compared to output space of SHA256

$$
\operatorname{Pr}[\text { Success in single trial }] \approx \frac{\text { Threshold }}{2^{256}}
$$

- For $0 \times \underbrace{00 \cdots 00}_{16 \text { times }} \underbrace{\text { FFFFF } \ldots \text { FFFFF }}_{48 \text { times }}$, success probability is $\frac{1}{2^{64}}$

Mining Difficulty and Rewards

- Why is mining hard?
- Brute-force search is the only way to find suitable nonce
- Target area is small compared to output space of SHA256

$$
\operatorname{Pr}[\text { Success in single trial }] \approx \frac{\text { Threshold }}{2^{256}}
$$

- For $0 \times \underbrace{00 \ldots 00}_{16 \text { times }} \underbrace{F F F F F \ldots \text { FFFFF }}_{48 \text { times }}$, success probability is $\frac{1}{2^{64}}$
- Why do mining?
- Successful miner gets rewarded in bitcoins
- Every block contains a coinbase transaction which creates 12.5 bitcoins
- Miners also collect the transaction fees in the block

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

Block Addition Workflow

- Nodes broadcast transactions
- Miners accept valid transactions and reject invalid ones (solves double spending)
- Miners try extending the latest block

- Successful miners broadcast solutions
- Unsuccessful miners abandon their current candidate blocks and start work on new ones

What if two miners solve the puzzle at the same time?

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

What if two miners solve the puzzle at the same time?

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce

What if two miners solve the puzzle at the same time?

Stale
block

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce

What if two miners solve the puzzle at the same time?

Stale
block

- Both miners will broadcast their solution on the network
- Nodes will accept the first solution they hear and reject others

- Nodes always switch to the chain which was more difficult to produce
- Eventually the network will converge and achieve consensus

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current network hashrate $\approx 50 \mathrm{EH} / \mathrm{s}=50 \times 10^{18} \mathrm{H} / \mathrm{s}$

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current network hashrate $\approx 50 \mathrm{EH} / \mathrm{s}=50 \times 10^{18} \mathrm{H} / \mathrm{s}$
- One mining unit costing $\$ 450$ gives $14.5 \mathrm{TH} / \mathrm{s}$

Tamper Resistance

- Suppose Alice wants to modify block B_{N}

- Alice works on A_{N} branch; other miners work on B_{N} branch

- She needs to mine blocks faster than the rest of the miners
- Possible if she controls 50% or more of network hashrate
- Current network hashrate $\approx 50 \mathrm{EH} / \mathrm{s}=50 \times 10^{18} \mathrm{H} / \mathrm{s}$
- One mining unit costing $\$ 450$ gives $14.5 \mathrm{TH} / \mathrm{s}$
- Controlling 50% of hashrate $=$ Controlling 775 million USD worth of hardware

Challenges for Enterprise Blockchains

- Proof-of-work consensus is not suitable
- Proof-of-authority is an alternative but insecure
- A valid block is one with a certain number of approvers
- Collusion between approvers can rewrite history

Challenges for Enterprise Blockchains

- Proof-of-work consensus is not suitable
- Proof-of-authority is an alternative but insecure
- A valid block is one with a certain number of approvers
- Collusion between approvers can rewrite history
- Possible solution = Checkpointing on public blockchains

Challenges for Enterprise Blockchains

- Proof-of-work consensus is not suitable
- Proof-of-authority is an alternative but insecure
- A valid block is one with a certain number of approvers
- Collusion between approvers can rewrite history
- Possible solution $=$ Checkpointing on public blockchains

Thanks for your attention

