
An Introduction to Bitcoin

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

https://www.ee.iitb.ac.in/~sarva

December 19, 2017

Venue: IIT Madras

1 / 52

https://www.ee.iitb.ac.in/~sarva


What is Bitcoin?

• Cryptocurrency
• Open source
• Decentralized network

2 / 52



Decentralization Challenges

• Counterfeiting
• Currency creation rules
• Double spending

• Alice pays Bob n digicoins for pizza
• Alice uses the same n digicoins to pay Carol for books

• Centralization solves all three problems

Solution without a central coordinator?

3 / 52



Double Spending

• Familiar to academics
• Submitting same paper to two conferences
• Possible solution

Reviewers google paper contents to find duplicates
• Solution fails if

• Conferences accepting papers at same time
• Conference proceedings not published/indexed

• Better solution
A single public database to store all submissions to all
conferences

4 / 52



The Blockchain
Bitcoin’s public database for storing transactions

Block Header

List of
Transactions

Block Header

List of
Transactions

Block Header

List of
Transactions

Block 0
(Genesis Block)

Block 1 Block N
(Present day)

· · ·

I see blocks. Where is the “chain”?

5 / 52



Block Header
nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

4 bytes
32 bytes
32 bytes

4 bytes
4 bytes
4 bytes

Previous Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

Current Block Header

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

Double
SHA-256

SHA-256: Cryptographic hash function

6 / 52



Cryptographic Hash Functions
• Input: Variable length bitstrings
• Output: Fixed length bitstrings
• Easy to compute but difficult to invert

• Given H(x), computationally infeasible to find x
• Collision resistant

• Computationally infeasible to find x 6= y with H(x) = H(y)
• Pseudorandom function

y3 y1 · · · y2

Bin 0 Bin 1 Bin 2 Bin 2256 − 2 Bin 2256 − 1

SHA-256
Messages

x1, x2, x3, . . .

• Demo
7 / 52



Bitcoin Mining



Preventing Spam in Public Databases
• A database you own where anyone in the world can add entries?

Your email inbox
• Hashcash was proposed in 1997 to prevent spam
• Protocol

• Suppose an email client wants to send email to an email server
• Client and server agree upon a cryptographic hash function H
• Email server sends the client a challenge string c

Server Client

c

c‖x

• Client needs to find a string x such that H(c‖x) begins with k zeros
• Since H has pseudorandom outputs, probability of success in a

single trial is
2n−k

2n =
1
2k

• The x corresponding to c is considered proof-of-work (PoW)
• PoW is difficult to generate but easy to verify

9 / 52



Bitcoin Mining (1/2)
• Process of adding new blocks to the blockchain
• Nodes which want to perform transactions broadcast them
• Miners collect some of these transactions into a candidate block

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

• hashPrevBlock contains double SHA-256 hash of previous block’s header
• hashMerkleRoot contains root hash of transaction Merkle tree

h = H(h0 ‖ h1)

h0 = H(h00 ‖ h01)

h00 = H(t0)

t0

h01 = H(t1)

t1

h1 = H(h10 ‖ h10)

h10 = H(t2)

t2

h10

10 / 52



Bitcoin Mining (2/2)

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

• nBits encodes a 256-bit target value T , say

T = 0x00 · · ·00︸ ︷︷ ︸
16 times

FFFFF · · ·FFFFF︸ ︷︷ ︸
48 times

• Miner who can find nNonce such that

SHA256 (SHA256 (nVersion ‖ HashPrevBlock ‖ . . . ‖ nNonce)) ≤ T

can add a new block

11 / 52



Why is Mining Hard?
Target value Fraction of

T SHA256d outputs ≤ T

0x7FFFF FFFF · · ·FFFF︸ ︷︷ ︸
63 times

1
2

0x0FFFF FFFF · · ·FFFF︸ ︷︷ ︸
63 times

1
16

0x00 · · ·00︸ ︷︷ ︸
16 times

FFFFF · · ·FFFFF︸ ︷︷ ︸
48 times

1
264

Pr [SHA256d output ≤ T ] ≈ T + 1
2256

12 / 52



Why should anyone mine blocks?

• Successful miner gets rewarded in bitcoins
• Every block contains a coinbase transaction which creates

12.5 bitcoins
• Each miner specifies his own address as the destination of the

new coins
• Every miner is competing to solve their own PoW puzzle
• Miners also collect the transaction fees in the block

13 / 52



Block Addition Workflow
• Nodes broadcast transactions
• Miners accept valid transactions and reject invalid ones (solves double spending)
• Miners try extending the latest block

Block
N − 2

Block
N − 1

Candidate
Block B

Candidate
Block A

Candidate
Block C

· · ·

• Miners compete to solve the search puzzle and broadcast solutions
• Unsuccessful miners abandon their current candidate blocks and start work on

new ones

Block
N − 2

Block
N − 1

Block
N

Candidate
Block B′

Candidate
Block A′

Candidate
Block C′

· · ·

14 / 52



What if two miners solve the puzzle at the same time?

Block
N − 2

Block
N − 1

Block
N· · ·

Solution from
miner A

Solution from
miner B

Block
N + 1

Block
N + 2

Stale
block

• Both miners will broadcast their solution on the network
• Nodes will accept the first solution they hear and reject others

MA

MB

A

A

A

A

A

A

B

B

B

B

B

B

B

• Nodes always switch to the longest chain they hear
• Eventually the network will converge and achieve consensus

15 / 52



How often are new blocks created?

• Once every 10 minutes

nVersion
hashPrevBlock
hashMerkleRoot
nTime
nBits
nNonce

• Every 2016 blocks, the target T is recalculated
• Let tsum = Number of seconds taken to mine last 2016 blocks

Tnew =
tsum

14× 24× 60× 60
× T

• Recall that probability of success in single trial is T+1
2256

• If tsum = 2016× 8× 60, then Tnew = 4
5 T

• If tsum = 2016× 12× 60, then Tnew = 6
5 T

16 / 52



Bitcoin Supply

• The block subsidy was initially 50 BTC per block
• Halves every 210,000 blocks ≈ 4 years
• Became 25 BTC in Nov 2012 and 12.5 BTC in July 2016
• Total Bitcoin supply is 21 million

• The last bitcoin will be mined in 2140
17 / 52



Bitcoin Payment Workflow

• Merchant shares address out of band (not using Bitcoin P2P)
• Customer broadcasts transaction t which pays the address
• Miners collect broadcasted transactions into a candidate block

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

• One of the candidate blocks containing t is mined
• Merchant waits for confirmations on t before providing goods

18 / 52



Bitcoin Transaction Format



Coinbase Transaction Format
Pre-SegWit

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...
Regular

Transaction n − 1

Block Format

Amount x1
Challenge Script C1

Amount x2
Challenge Script C2

Coinbase Transaction

Output 0

Output 1

nValue
scriptPubkeyLen
scriptPubkey

Output Format

• nValue contains number of satoshis locked in output
• 1 Bitcoin = 108 satoshis

• scriptPubkey contains the challenge script
• scriptPubkeyLen contains byte length of challenge script

20 / 52



Regular Transaction Format
Pre-SegWit

Tx ID = I1
Output Index = 0

Response Script R1

Tx ID = I1
Output Index = 1

Response Script R2

Tx ID = I2
Output Index = 0

Response Script R3

Amount y1
Challenge Script C4

Amount y2
Challenge Script C5

Regular Transaction

Input 0

Input 1

Input 2

Output 0

Output 1

One or more
inputs

Amount x1
Challenge Script C1

Amount x2
Challenge Script C2

Previous Regular Tx
with Tx ID = I1

Output 0

Output 1

Amount x3
Challenge Script C3

Previous Coinbase Tx
with Tx ID = I2

Output 0

hash
n
scriptSigLen
scriptSig
nSequence

nValue
scriptPubkeyLen
scriptPubkey

Input Format

Output Format

• hash and n identify output being unlocked
• scriptSig contains the response script

21 / 52



Bitcoin Scripting Language



Script

• Forth-like stack-based language
• One-byte opcodes

OP_2 OP_3 OP_ADD

2
OP_3 OP_ADD

3
2OP_ADD

5

Stack StateRemaining Script

23 / 52



Challenge/Response Script Execution

<Response Script> <Challenge Script>

x1

x2
...

xn

<Challenge Script>

y1

y2
...

ym

Stack StateRemaining Script

Response is valid if top element y1 evaluates to True
24 / 52



Challenge Script Example
OP_HASH256 0x20 <256-bit string>︸ ︷︷ ︸

S

OP_EQUAL

x
OP_HASH256 0x20 S OP_EQUAL

H(x)
0x20 S OP_EQUAL

S
H(x)OP_EQUAL

0 or 1

Stack StateRemaining Script

Unsafe challenge script! Guess why?
25 / 52



Pay to Public Key



Digital Signatures

(Message, Signature)Signer

Message

Signer’s
Private Key

Verifier
Decision on

Signature Validity

Signer’s
Public Key

Private Key Public Key

Easy

Hard

27 / 52



Pay to Public Key

• Challenge script: 0x21 <Public Key> OP_CHECKSIG

• Response script: <Signature>

<Signature> <Public Key> OP_CHECKSIG

<Signature>
<Public Key> OP_CHECKSIG

<Public Key>
<Signature>OP_CHECKSIG

True/False

Stack StateRemaining Script

28 / 52



Signatures Protect Transactions

nVersion
0x02
hash0
n0
scriptSigLen0
scriptSig0
nSequence0
hash1
n1
scriptSigLen1
scriptSig1
nSequence1
0x02
nValue0
scriptPubkeyLen0
scriptPubkey0
nValue1
scriptPubkeyLen1
scriptPubkey1
nLockTime

nVersion
0x02
hash0
n0
prevScriptPubkeyLen0
prevScriptPubkey0
nSequence0
hash1
n1
0x00
nSequence1
0x02
nValue0
scriptPubkeyLen0
scriptPubkey0
nValue1
scriptPubkeyLen1
scriptPubkey1
nLockTime
nHashType

Regular Transaction
Message for

Input 0 signatures

Input 0

Input 1

Output 0

Output 1

Input 0
Fields

Input 1
Fields

Output 0
Fields

Output 1
Fields

29 / 52



Pay to Public Key Hash



Pay to Public Key Hash Address

• To receive bitcoins, a challenge script needs to be specified
• P2PKH addresses encode P2PKH challenge scripts
• Example: 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

31 / 52



Base58 Encoding

1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm

l
0091B24BF9F5288532960AC687ABB035127B1D28A50074FFE0

• Alphanumeric representation of bytestrings
• From 62 alphanumeric characters 0, O, I, l are excluded

Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int
1 0 A 9 K 18 U 27 d 36 n 45 w 54
2 1 B 10 L 19 V 28 e 37 o 46 x 55
3 2 C 11 M 20 W 29 f 38 p 47 y 56
4 3 D 12 N 21 X 30 g 39 q 48 z 57
5 4 E 13 P 22 Y 31 h 40 r 49
6 5 F 14 Q 23 Z 32 i 41 s 50
7 6 G 15 R 24 a 33 j 42 t 51
8 7 H 16 S 25 b 34 k 43 u 53
9 8 J 17 T 26 c 35 m 44 v 53

• Given a bytestring bnbn−1 · · · b0
• Encode each leading zero byte as a 1
• Get integer N =

∑n−m
i=0 bi 256i

• Get ak ak−1 · · · a0 where N =
∑k

i=0 ai 58i

• Map each integer ai to a Base58 character
32 / 52



Pay to Public Key Hash Address
Public Key SHA-256

RIPEMD-160

Prefix address
version byte

Double
SHA-256

Extract first
four bytes

‖

Base58
Encoding P2PKH Address

S

R

B‖R

C

C4

B‖R‖C4

33 / 52



Why Hash the Public Key?

Private Key Public Key

Point Addition

ECDLP

• ECDLP = Elliptic Curve Discrete Logarithm Problem
• ECDLP currently hard but no future guarantees
• Hashing the public key gives extra protection

Solve
ECDLP

P2PK
Address Private key

P2PKH
Address

Find
RIPEMD-160

preimage

Find
SHA-256
preimage

Solve
ECDLP Private key

34 / 52



P2PKH Transaction

• Challenge script
OP_DUP OP_HASH160 <PubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

P2PKH Address
Base58

Decoding

Discard last
four bytes

Discard address
version prefix byte PubKeyHash

B‖R‖C4

B‖R

R

• Response script: <Signature> <Public Key>

35 / 52



P2PKH Script Execution (1/2)

<Signature> <Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Signature><Public Key> OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Signature>

OP_DUP OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Public Key>
<Signature>

OP_HASH160
<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

Stack StateRemaining Script

36 / 52



P2PKH Script Execution (2/2)

<PubKeyHashCalc>
<Public Key>
<Signature>

<PubKeyHash> OP_EQUALVERIFY OP_CHECKSIG

<PubKeyHash>
<PubKeyHashCalc>

<Public Key>
<Signature>

OP_EQUALVERIFY OP_CHECKSIG

<Public Key>
<Signature>

OP_CHECKSIG

True/False

Stack StateRemaining Script

37 / 52



Multi-Signature



m-of-n Multi-Signature Scripts

• m-of-n multisig challenge script specifies n public keys

m <Public Key 1> · · · <Public Key n> n OP_CHECKMULTISIG

• Response script provides signatures created using any m out of
the n private keys

OP_0 <Signature 1> · · · <Signature m>.

• Example: m = 2 and n = 3
• Challenge script

OP_2 <PubKey1> <PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

• Response script
OP_0 <Sig1> <Sig2>

39 / 52



2-of-3 Multisig Script Execution

OP_0 <Sig1> <Sig2> OP_2 <PubKey1>
<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

<Sig2>
<Sig1>

<Empty Array>
OP_2 <PubKey1>

<PubKey2> <PubKey3> OP_3 OP_CHECKMULTISIG

3
<PubKey3>
<PubKey2>
<PubKey1>

2
<Sig2>
<Sig1>

<Empty Array>

OP_CHECKMULTISIG

True/False

Stack StateRemaining Script

40 / 52



Smart Contracts



Smart Contracts

• Computer protocols which help execution/enforcement of regular
contracts

• Minimize trust between interacting parties
• Hypothetical example: Automatic fine for noise pollution

• Campus community hall parties use loudspeakers
• Party organizers pay bitcoin security deposit
• If noise rules violated, deposit distributed to nearby residents

• Two actual examples
• Escrow
• Micropayments

42 / 52



Smart Contracts
Escrow



Problem Setup

• Alice wants to buy a rare book from Bob
• Alice and Bob live in different cities
• Bob promises to ship the book upon receiving Bitcoin payment
• Alice does not trust Bob
• Alice proposes an escrow contract involving a third party Carol

44 / 52



Escrow Contract

• Alice requests public keys from Bob and Carol
• Alice pays x bitcoins to a 2-of-3 multisig output

OP_2 <PubKeyA> <PubKeyB> <PubKeyC> OP_3 OP_CHECKMULTISIG

• Bob ships book once Alice’s transaction is confirmed
• Bitcoins can be spent if any two of the three provide signatures
• Any of the following scenarios can occur

• Alice receives book.
Alice and Bob sign.

• Alice receives the book but refuses to sign.
Bob provides proof of shipment to Carol.
Bob and Carol sign.

• Bob does not ship the book to Alice.
Bob refuses to sign refund transaction.
Alice and Carol sign.

• Escrow contract fails if Carol colludes with Alice or Bob
• Also proof of shipment is not proof of contents

45 / 52



Smart Contracts
Micropayments



Problem Setup

• Bitcoin transaction fees make small payments expensive
• Micropayments contract can aggregate small payments
• Alice offers proofreading and editing services online
• She accepts bitcoins as payments
• Clients email documents to Alice
• Alice replies with typos and grammatical errors
• Alice charges a fixed amount of bitcoins per edited page
• To avoid clients refusing payment, Alice uses micropayments

contract
• Suppose Bob wants a 100 page document edited
• Alice charges 0.0001 BTC per page
• Bob expects to pay a maximum of 0.01 BTC to Alice

47 / 52



Micropayments Contract (1/3)
Creating Refund Transaction

• Bob requests a public key from Alice

• Bob creates a transaction t1 which
transfers 0.01 bitcoins to a 2-of-2
multisig output

• Bob does not broadcast t1 on the
network

• Bob creates a refund transaction t2
which refunds the 0.01 BTC

• A relative lock time of n days is set on t2
• Bob includes his signature in t2 and

sends it to Alice

• If Alice refuses to sign, Bob terminates
the contract

• If Alice signs t2 and gives it Bob, he has
the refund transaction

Alice Bob

Request public key

Send PubKeyA Create PubKeyB

Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig

48 / 52



Micropayments Contract (2/3)
Getting Paid for First Page Edits

• Bob broadcasts t1 on the network

• Once t1 is confirmed, he sends Alice
his document

• Alice edits only the first page of the
document

• She creates a transaction e1 which
unlocks t1 and pays her 0.0001 BTC
and 0.0099 BTC to Bob

• Alice signs e1 and sends it to Bob
along with the first page edits

• If Bob refuses to sign e1, then
• Alice terminates the contract.
• Bob broadcasts t2 after lock

time expires
• If Bob signs e1 and returns it to Alice,

then Alice is guaranteed 0.0001
bitcoins if she broadcasts e1 before
lock time on t2 expires.

Alice Bob Network

Request public key

Send PubKeyA Create PubKeyB

Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig Broadcast t1

t1 confirmation

Send document

Send e1 with A’s sig and page 1 edits

Send e1 with B’s sig

49 / 52



Micropayments Contract (3/3)
Getting Paid for Second Page, Third Page . . .

• Alice edits the second page of the
document

• She creates a transaction e2 which
unlocks t1 and pays her 0.0002 BTC
and 0.0098 BTC to Bob

• Alice signs e2 and sends it to Bob
along with the second page edits
• If Bob refuses to sign e2, then Alice

terminates the contract.
Alice broadcasts e1 and receives
0.0001 BTC.

• If Bob signs e2 and returns it to Alice,
then Alice is guaranteed 0.0002
bitcoins if she broadcasts e2 before
lock time on t2 expires.

• Alice continues sending edited pages
along with transactions requesting
cumulative payments

• She has to finish before the refund
transaction lock time expires

Alice Bob Network

Request public key

Send PubKeyA Create PubKeyB

Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig Broadcast t1

t1 confirmation

Send document

Send e1 with A’s sig and page 1 edits

Send e1 with B’s sig

Send e2 with A’s sig and page 2 edits

Send e2 with B’s sig

...

Send e100 with A’s sig and page 100 edits

Send e100 with B’s sig

Broadcast e100

e100 confirmation

50 / 52



Key Takeaways

• Smart contracts reduce the need for trust
• Bitcoin’s scripting language enables some smart contracts
• Not powerful enough to express complex contracts

51 / 52



Bitcoin Learning Resources

• Code https://github.com/bitcoin/bitcoin/

• Reddit https://www.reddit.com/r/Bitcoin/
• Stackoverflow https://bitcoin.stackexchange.com/

• Forum https://bitcointalk.org/

• IRC https://en.bitcoin.it/wiki/IRC_channels

• Books
• Princeton book http://bitcoinbook.cs.princeton.edu/
• Mastering Bitcoin, Andreas Antonopoulos

• Notes
• https://www.ee.iitb.ac.in/~sarva/bitcoin.html

Thanks for your attention
Questions/Comments?

Email: sarva@ee.iitb.ac.in
Social: https://about.me/sv1

52 / 52

https://github.com/bitcoin/bitcoin/
https://www.reddit.com/r/Bitcoin/
https://bitcoin.stackexchange.com/
https://bitcointalk.org/
https://en.bitcoin.it/wiki/IRC_channels
http://bitcoinbook.cs.princeton.edu/
https://www.ee.iitb.ac.in/~sarva/bitcoin.html
sarva@ee.iitb.ac.in
https://about.me/sv1

	Bitcoin Mining
	Bitcoin Transaction Format
	Bitcoin Scripting Language
	Pay to Public Key
	Pay to Public Key Hash
	Multi-Signature
	Smart Contracts
	Escrow
	Micropayments


