Characteristic Functions

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 22, 2013

Characteristic Functions

Definition

For a random variable X, the characteristic function is given by

 $\phi(t) = E(e^{itX})$

Examples

• Bernoulli RV: P(X = 1) = p and P(X = 0) = 1 - p

$$\phi(t) = 1 - p + p e^{it} = q + p e^{it}$$

• Gaussian RV: Let
$$X \sim N(\mu, \sigma^2)$$

$$\phi(t) = \exp\left(i\mu t - \frac{1}{2}\sigma^2 t^2\right)$$

Properties of Characteristic Functions

Theorem If X and Y are independent, then

 $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(s).$

Example (Binomial RV)

$$\phi(t) = \left(q + \rho e^{it}\right)^r$$

Example (Sum of Independent Gaussian RVs) Let $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ be independent. What is the distribution of X + Y?

Theorem If $a, b \in \mathbb{R}$ and Y = aX + b, then

$$\phi_Y(t) = e^{itb}\phi_X(at).$$

Inversion and Continuity Theorems

Theorem

Random variables X and Y have the same characteristic function if and only if they have the same distribution function.

Theorem

Suppose F_1, F_2, \ldots is a sequence of distribution functions with corresponding characteristic functions ϕ_1, ϕ_2, \ldots .

- If F_n → F for some distribution function F with characteristic function φ, then φ_n(t) → φ(t) for all t.
- Conversely, if φ(t) = lim_{n→∞} φ_n(t) exists and is continuous at t = 0, then φ is the characteristic function of some distribution function F, and F_n → F.

Questions?