Continuous Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 27, 2013

Continuous Random Variables

Definition

A random variable is called continuous if its distribution function can be expressed as

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$
 for all $x \in \mathbb{R}$

for some integrable function $f : \mathbb{R} \to [0, \infty)$ called the probability density function of *X*.

Example

Uniform random variable $\Omega = [a, b], X(\omega) = \omega,$

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{otherwise} \end{cases}$$
$$F(x) = \begin{cases} 0 & x < a\\ \frac{x-a}{b-a} & a \le x \le b\\ 1 & x > b \end{cases}$$

Probability Density Function

- The numerical value f(x) is not a probability. It can be larger than 1.
- f(x)dx can be intepreted as the probability $P(x < X \le x + dx)$ since

$$P(x < X \le x + dx) = F(x + dx) - F(x) \approx f(x) dx$$

•
$$P(a \le X \le b) = \int_a^b f(x) dx$$

- $\int_{-\infty}^{\infty} f(x) dx = 1$
- P(X = x) = 0 for all $x \in \mathbb{R}$

Independence

- Continuous random variables X and Y are independent if the events {X ≤ x} and {Y ≤ y} are independent for all x and y in ℝ
- If X and Y are independent, then the random variables g(X) and h(Y) are independent
- Let the joint probability distribution function of X and Y be $F(x, y) = P(X \le x, Y \le y)$.

Then X and Y are said to be jointly continuous random variables with joint pdf $f_{X,Y}(x, y)$ if

$$F(x,y) = \int_{-\infty}^{u} \int_{-\infty}^{v} f_{X,Y}(u,v) \, du \, dv$$

for all x, y in \mathbb{R}

• X and Y are independent if and only if

 $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all $x, y \in \mathbb{R}$

Expectation

 The expectation of a continuous random variable with density function f is given by

$$E(X) = \int_{-\infty}^{\infty} xf(x) \ dx$$

whenever this integral is finite.

• If X and g(X) are continuous random variables, then

$$E(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) \, dx$$

- If $a, b \in \mathbb{R}$, then E(aX + bY) = aE(X) + bE(Y)
- If X and Y are independent, E(XY) = E(X)E(Y)
- If k is a positive integer, the kth moment m_k of X is defined to be m_k = E(X^k)
- The *k*th central moment σ_k is $\sigma_k = E\left[(X m_1)^k\right]$
- The second central moment $\sigma_2 = E[(X m_1)^2]$ is called the variance
- For a non-negative continuous RV X, $E(X) = \int_0^\infty [1 F(x)] dx$
- Cauchy-Schwarz inequality holds for continuous random variables

Gaussian Random Variables

Gaussian Random Variable

Definition

A continuous random variable with pdf of the form

$$p(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight), \quad -\infty < x < \infty,$$

where μ is the mean and σ^2 is the variance.

Notation

- *N*(μ, σ²) denotes a Gaussian distribution with mean μ and variance σ²
- $X \sim N(\mu, \sigma^2) \Rightarrow X$ is a Gaussian RV with mean μ and variance σ^2
- $X \sim N(0, 1)$ is termed a standard Gaussian RV

Affine Transformations Preserve Gaussianity

Theorem

If X is Gaussian, then aX + b is Gaussian for $a, b \in \mathbb{R}, a \neq 0$.

Remarks

- If $X \sim N(\mu, \sigma^2)$, then $aX + b \sim N(a\mu + b, a^2\sigma^2)$.
- If $X \sim N(\mu, \sigma^2)$, then $\frac{\chi_{-\mu}}{\sigma} \sim N(0, 1)$.

CDF and CCDF of Standard Gaussian

Cumulative distribution function of X ~ N(0, 1)

$$\Phi(x) = P[X \le x] = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right) dt$$

 Complementary cumulative distribution function of X ~ N(0, 1)

$$Q(x) = P[X > x] = \int_x^\infty \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-t^2}{2}\right) dt$$

Properties of Q(x)

- $\Phi(x) + Q(x) = 1$
- $Q(-x) = \Phi(x) = 1 Q(x)$
- $Q(0) = \frac{1}{2}$
- $Q(\infty) = 0$
- $Q(-\infty) = 1$
- $X \sim N(\mu, \sigma^2)$

$$P[X > \alpha] = Q\left(\frac{\alpha - \mu}{\sigma}\right)$$
 $P[X < \alpha] = Q\left(\frac{\mu - \alpha}{\sigma}\right)$

Jointly Gaussian Random Variables

Definition (Jointly Gaussian RVs)

Random variables $X_1, X_2, ..., X_n$ are jointly Gaussian if any non-trivial linear combination is a Gaussian random variable.

 $a_1X_1 + \cdots + a_nX_n$ is Gaussian for all $(a_1, \ldots, a_n) \in \mathbb{R}^n \setminus \mathbf{0}$

Example (Not Jointly Gaussian) $X \sim N(0, 1)$

$$Y = \left\{egin{array}{cc} X, & ext{if } |X| > 1 \ -X, & ext{if } |X| \leq 1 \end{array}
ight.$$

 $Y \sim N(0, 1)$ and X + Y is not Gaussian.

Gaussian Random Vector

Definition (Gaussian Random Vector)

A random vector $\mathbf{X} = (X_1, \dots, X_n)^T$ whose components are jointly Gaussian.

Notation $\mathbf{X} \sim N(\mathbf{m}, \mathbf{C})$ where

$$\mathbf{m} = E[\mathbf{X}], \ \mathbf{C} = E\left[(\mathbf{X} - \mathbf{m})(\mathbf{X} - \mathbf{m})^T\right]$$

Definition (Joint Gaussian Density) If **C** is invertible, the joint density is given by

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

Uncorrelated Jointly Gaussian RVs are Independent

If X_1, \ldots, X_n are jointly Gaussian and pairwise uncorrelated, then they are independent.

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$
$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(x_i - m_i)^2}{2\sigma_i^2}\right)$$

where $m_i = E[X_i]$ and $\sigma_i^2 = \operatorname{var}(X_i)$.

Uncorrelated Gaussian RVs may not be Independent

Example

- *X* ~ *N*(0, 1)
- W is equally likely to be +1 or -1
- W is independent of X
- Y = WX
- *Y* ~ *N*(0, 1)
- X and Y are uncorrelated
- X and Y are not independent

Conditional Distribution and Density Functions

Conditional Distribution Function

- For discrete RVs, the conditional distribution was defined as $F_{Y|X}(y|x) = P(Y \le y|X = x)$ for any *x* such that P(X = x) > 0
- For continuous RVs, P(X = x) = 0 for all x
- But considering an interval around x such that f_X(x) > 0, we have

$$P(Y \le y | x \le X \le x + dx) = \frac{P(Y \le y, x \le X \le x + dx)}{P(x \le X \le x + dx)}$$
$$\approx \frac{\int_{v = -\infty}^{y} f(x, v) \, dx \, dv}{f_X(x) \, dx}$$
$$= \int_{v = -\infty}^{y} \frac{f(x, v)}{f_X(x)} \, dv$$

Definition

The conditional distribution function of *Y* given X = x is the function $F_{Y|X}(\cdot|x)$ given by

$$F_{Y|X}(y|x) = \int_{v=-\infty}^{y} \frac{f(x,v)}{f_X(x)} dv$$

for any x such that $f_X(x) > 0$. It is sometimes denoted by $P(Y \le y | X = x)$.

Conditional Density Function

Definition

The conditional density function of Y given X = x is given by

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

for any *x* such that $f_X(x) > 0$.

Example (Bivariate Standard Normal Distribution) *X* and *Y* are continuous random variables with joint density given by

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right)$$

where $-1 < \rho < 1$. [X Y]^T ~ $N(\mathbf{m}, \mathbf{C})$ where

$$\mathbf{m} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \mathbf{C} = \begin{bmatrix} \mathbf{1} & \rho \\ \rho & \mathbf{1} \end{bmatrix}$$

What are the marginal densities of X and Y? What is the conditional density $f_{Y|X}(y|x)$?

Conditional Expectation

Definition

The conditional expectation of Y given X is given by

$$E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy$$

Theorem

The conditional expectation $\psi(X) = E(Y|X)$ satisfies

$$E[E(Y|X)] = E(Y)$$

Example (Bivariate Standard Normal Distribution) *X* and *Y* are continuous random variables with joint density given by

$$f(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(x^2 - 2\rho xy + y^2)\right)$$

where $-1 < \rho < 1$. What is the conditional expectation of *Y* given *X*?

Functions of Continuous Random Variables

Functions of a Single Random Variable

 If X is a continuous random variable with density function f, what is the distribution function of Y = g(X)?

$$F_{Y}(y) = P(g(X) \le y)$$

= $P\left(X \in g^{-1}(-\infty, y]\right)$
= $\int_{g^{-1}(-\infty, y]} f(x) dx$

Example (Affine transformation)

Let *X* be a continuous random variable. What are the distribution and density functions of aX + b for $a, b \in \mathbb{R}$?

Example (Squaring a Gaussian RV)

Let $X \sim N(0, 1)$ and let $g(x) = x^2$. What are the distribution and density functions of g(X)?

Functions of Two Random Variables

- Let X_1 and X_2 have the joint density function f. Let $Y_1 = g(X_1, X_2)$ and $Y_2 = h(X_1, X_2)$. What is the joint density function of Y_1 and Y_2 ?
- Let the transformation $T : (x_1, x_2) \rightarrow (y_1, y_2)$ be one-to-one. Then the transformation has an inverse $x_1 = x_1(y_1, y_2)$ and $x_2 = x_2(y_1, y_2)$ with Jacobian equal to the determinant

$$J(y_1, y_2) = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \frac{\partial x_1}{\partial y_1} \frac{\partial x_2}{\partial y_2} - \frac{\partial x_1}{\partial y_2} \frac{\partial x_2}{\partial y_1}$$

• The joint density of Y₁ and Y₂ is given by

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} f(x_1(y_1,y_2), x_2(y_1,y_2))|J| & \text{if } (y_1,y_2) \text{ is in } T \text{'s range} \\ 0 & \text{otherwise} \end{cases}$$

Example

Let $Y_1 = aX_1 + bX_2$ and $Y_2 = cX_1 + dX_2$ with $ad - bc \neq 0$. What is the joint density of Y_1 and Y_2 ?

Sum of Continuous Random Variables

Theorem

If X and Y have a joint density function f, then X + Y has density function

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f(x, z-x) \, dx.$$

If X and Y are independent, then

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \, dx = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy.$$

The density function of the sum is the convolution of the marginal density functions.

Example (Sum of Gaussian RVs)

Let $X \sim N(0, 1)$ and $Y \sim N(0, 1)$ be independent. What is the density function of X + Y?

Questions?