Continuous Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay

February 27, 2013

Continuous Random Variables

Definition

A random variable is called continuous if its distribution function can be expressed as

$$
F(x)=\int_{-\infty}^{x} f(u) d u \text { for all } x \in \mathbb{R}
$$

for some integrable function $f: \mathbb{R} \rightarrow[0, \infty)$ called the probability density function of X.

Example

Uniform random variable
$\Omega=[a, b], X(\omega)=\omega$,

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right. \\
& F(x)=\left\{\begin{array}{cc}
0 & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x>b
\end{array}\right.
\end{aligned}
$$

Probability Density Function

- The numerical value $f(x)$ is not a probability. It can be larger than 1 .
- $f(x) d x$ can be intepreted as the probability $P(x<X \leq x+d x)$ since

$$
P(x<X \leq x+d x)=F(x+d x)-F(x) \approx f(x) d x
$$

- $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- $P(X=x)=0$ for all $x \in \mathbb{R}$

Independence

- Continuous random variables X and Y are independent if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all x and y in \mathbb{R}
- If X and Y are independent, then the random variables $g(X)$ and $h(Y)$ are independent
- Let the joint probability distribution function of X and Y be $F(x, y)=P(X \leq x, Y \leq y)$.
Then X and Y are said to be jointly continuous random variables with joint pdf $f_{X, Y}(x, y)$ if

$$
F(x, y)=\int_{-\infty}^{u} \int_{-\infty}^{v} f_{X, Y}(u, v) d u d v
$$

for all x, y in \mathbb{R}

- X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y \in \mathbb{R}
$$

Expectation

- The expectation of a continuous random variable with density function f is given by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

whenever this integral is finite.

- If X and $g(X)$ are continuous random variables, then

$$
E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

- If $a, b \in \mathbb{R}$, then $E(a X+b Y)=a E(X)+b E(Y)$
- If X and Y are independent, $E(X Y)=E(X) E(Y)$
- If k is a positive integer, the k th moment m_{k} of X is defined to be $m_{k}=E\left(X^{k}\right)$
- The k th central moment σ_{k} is $\sigma_{k}=E\left[\left(X-m_{1}\right)^{k}\right]$
- The second central moment $\sigma_{2}=E\left[\left(X-m_{1}\right)^{2}\right]$ is called the variance
- For a non-negative continuous $\mathrm{RV} X, E(X)=\int_{0}^{\infty}[1-F(x)] d x$
- Cauchy-Schwarz inequality holds for continuous random variables

Gaussian Random Variables

Gaussian Random Variable

Definition

A continuous random variable with pdf of the form

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), \quad-\infty<x<\infty
$$

where μ is the mean and σ^{2} is the variance.

Notation

- $N\left(\mu, \sigma^{2}\right)$ denotes a Gaussian distribution with mean μ and variance σ^{2}
- $X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow X$ is a Gaussian RV with mean μ and variance σ^{2}
- $X \sim N(0,1)$ is termed a standard Gaussian RV

Affine Transformations Preserve Gaussianity

Theorem
If X is Gaussian, then $a X+b$ is Gaussian for $a, b \in \mathbb{R}, a \neq 0$.
Remarks

- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $a X+b \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)$.
- If $X \sim N\left(\mu, \sigma^{2}\right)$, then $\frac{X-\mu}{\sigma} \sim N(0,1)$.

CDF and CCDF of Standard Gaussian

- Cumulative distribution function of $X \sim N(0,1)$

$$
\Phi(x)=P[X \leq x]=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

- Complementary cumulative distribution function of $X \sim N(0,1)$

$$
Q(x)=P[X>x]=\int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-t^{2}}{2}\right) d t
$$

Properties of $Q(x)$

- $\Phi(x)+Q(x)=1$
- $Q(-x)=\Phi(x)=1-Q(x)$
- $Q(0)=\frac{1}{2}$
- $Q(\infty)=0$
- $Q(-\infty)=1$
- $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& P[X>\alpha]=Q\left(\frac{\alpha-\mu}{\sigma}\right) \\
& P[X<\alpha]=Q\left(\frac{\mu-\alpha}{\sigma}\right)
\end{aligned}
$$

Jointly Gaussian Random Variables

Definition (Jointly Gaussian RVs)
Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are jointly Gaussian if any non-trivial linear combination is a Gaussian random variable.

$$
a_{1} X_{1}+\cdots+a_{n} X_{n} \text { is Gaussian for all }\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \backslash \mathbf{0}
$$

Example (Not Jointly Gaussian)
$X \sim N(0,1)$

$$
Y=\left\{\begin{array}{rr}
X, & \text { if }|X|>1 \\
-X, & \text { if }|X| \leq 1
\end{array}\right.
$$

$Y \sim N(0,1)$ and $X+Y$ is not Gaussian.

Gaussian Random Vector

Definition (Gaussian Random Vector)
A random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ whose components are jointly Gaussian.

Notation
$\mathbf{X} \sim N(\mathbf{m}, \mathbf{C})$ where

$$
\mathbf{m}=E[\mathbf{X}], \quad \mathbf{C}=E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{T}\right]
$$

Definition (Joint Gaussian Density)
If \mathbf{C} is invertible, the joint density is given by

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)
$$

Uncorrelated Jointly Gaussian RVs are Independent

 If X_{1}, \ldots, X_{n} are jointly Gaussian and pairwise uncorrelated, then they are independent.$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right) \\
& =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}-m_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

where $m_{i}=E\left[X_{i}\right]$ and $\sigma_{i}^{2}=\operatorname{var}\left(X_{i}\right)$.

Uncorrelated Gaussian RVs may not be Independent

Example

- $X \sim N(0,1)$
- W is equally likely to be +1 or -1
- W is independent of X
- $Y=W X$
- $Y \sim N(0,1)$
- X and Y are uncorrelated
- X and Y are not independent

Conditional Distribution and Density Functions

Conditional Distribution Function

- For discrete RVs, the conditional distribution was defined as $F_{Y \mid X}(y \mid x)=P(Y \leq y \mid X=x)$ for any x such that $P(X=x)>0$
- For continuous RVs, $P(X=x)=0$ for all x
- But considering an interval around x such that $f_{X}(x)>0$, we have

$$
\begin{aligned}
P(Y \leq y \mid x \leq X \leq x+d x) & =\frac{P(Y \leq y, x \leq X \leq x+d x)}{P(x \leq X \leq x+d x)} \\
& \approx \frac{\int_{v=-\infty}^{y} f(x, v) d x d v}{f_{x}(x) d x} \\
& =\int_{v=-\infty}^{y} \frac{f(x, v)}{f_{X}(x)} d v
\end{aligned}
$$

Definition

The conditional distribution function of Y given $X=x$ is the function $F_{Y \mid X}(\cdot \mid x)$ given by

$$
F_{Y \mid X}(y \mid x)=\int_{v=-\infty}^{y} \frac{f(x, v)}{f_{X}(x)} d v
$$

for any x such that $f_{X}(x)>0$. It is sometimes denoted by $P(Y \leq y \mid X=x)$.

Conditional Density Function

Definition

The conditional density function of Y given $X=x$ is given by

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

for any x such that $f_{X}(x)>0$.

Example (Bivariate Standard Normal Distribution)

X and Y are continuous random variables with joint density given by

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}-2 \rho x y+y^{2}\right)\right)
$$

where $-1<\rho<1$.
$\left.{ }^{[} X Y\right]^{T} \sim N(\mathbf{m}, \mathbf{C})$ where

$$
\mathbf{m}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{C}=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

What are the marginal densities of X and Y ? What is the conditional density $f_{Y \mid X}(y \mid x)$?

Conditional Expectation

Definition

The conditional expectation of Y given X is given by

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y
$$

Theorem
The conditional expectation $\psi(X)=E(Y \mid X)$ satisfies

$$
E[E(Y \mid X)]=E(Y)
$$

Example (Bivariate Standard Normal Distribution)

X and Y are continuous random variables with joint density given by

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(x^{2}-2 \rho x y+y^{2}\right)\right)
$$

where $-1<\rho<1$. What is the conditional expectation of Y given X ?

Functions of Continuous Random Variables

Functions of a Single Random Variable

- If X is a continuous random variable with density function f, what is the distribution function of $Y=g(X)$?

$$
\begin{aligned}
F_{Y}(y) & =P(g(X) \leq y) \\
& =P\left(x \in g^{-1}(-\infty, y]\right) \\
& =\int_{g^{-1}(-\infty, y]} f(x) d x
\end{aligned}
$$

Example (Affine transformation)

Let X be a continuous random variable. What are the distribution and density functions of $a X+b$ for $a, b \in \mathbb{R}$?

Example (Squaring a Gaussian RV)

Let $X \sim N(0,1)$ and let $g(x)=x^{2}$. What are the distribution and density functions of $g(X)$?

Functions of Two Random Variables

- Let X_{1} and X_{2} have the joint density function f. Let $Y_{1}=g\left(X_{1}, X_{2}\right)$ and $Y_{2}=h\left(X_{1}, X_{2}\right)$. What is the joint density function of Y_{1} and Y_{2} ?
- Let the transformation $T:\left(x_{1}, x_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)$ be one-to-one. Then the transformation has an inverse $x_{1}=x_{1}\left(y_{1}, y_{2}\right)$ and $x_{2}=x_{2}\left(y_{1}, y_{2}\right)$ with Jacobian equal to the determinant

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{1}} \\
\frac{\partial x_{1}}{\partial y_{2}} & \frac{\partial x_{2}}{\partial y_{2}}
\end{array}\right|=\frac{\partial x_{1}}{\partial y_{1}} \frac{\partial x_{2}}{\partial y_{2}}-\frac{\partial x_{1}}{\partial y_{2}} \frac{\partial x_{2}}{\partial y_{1}}
$$

- The joint density of Y_{1} and Y_{2} is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)= \begin{cases}f\left(x_{1}\left(y_{1}, y_{2}\right), x_{2}\left(y_{1}, y_{2}\right)\right)|J| & \text { if }\left(y_{1}, y_{2}\right) \text { is in } T \text { 's range } \\ 0 & \text { otherwise }\end{cases}
$$

Example

Let $Y_{1}=a X_{1}+b X_{2}$ and $Y_{2}=c X_{1}+d X_{2}$ with $a d-b c \neq 0$. What is the joint density of Y_{1} and Y_{2} ?

Sum of Continuous Random Variables

Theorem

If X and Y have a joint density function f, then $X+Y$ has density function

$$
f_{X+Y}(z)=\int_{-\infty}^{\infty} f(x, z-x) d x
$$

If X and Y are independent, then

$$
f_{X+Y}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x=\int_{-\infty}^{\infty} f_{X}(z-y) f_{Y}(y) d y
$$

The density function of the sum is the convolution of the marginal density functions.

Example (Sum of Gaussian RVs)

Let $X \sim N(0,1)$ and $Y \sim N(0,1)$ be independent. What is the density function of $X+Y$?

Questions?

