Convergence of Random Variables

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

April 3, 2013

Motivation

Theorem (Weak Law of Large Numbers)

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\frac{S_{n}}{n} \xrightarrow{P} \mu \quad \text { as } n \rightarrow \infty
$$

Theorem (Central Limit Theorem)

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^{2}. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}} \xrightarrow{D} N(0,1) \quad \text { as } n \rightarrow \infty
$$

Modes of Convergence

- Let X, X_{1}, X_{2}, \ldots be random variables on some probability space (Ω, \mathcal{F}, P)
- There are four ways of defining $X_{n} \rightarrow X$ as $n \rightarrow \infty$
- Convergence almost surely
- Convergence in r th mean
- Convergence in probability
- Convergence in distribution

Convergence Almost Surely

- $X_{n} \rightarrow X$ almost surely if $\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right.$ as $\left.n \rightarrow \infty\right\}$ is an event whose probability is 1
- " $X_{n} \rightarrow X$ almost surely" is abbreviated as $X_{n} \xrightarrow{\text { a.s. }} X$
- Other notations are
- $X_{n} \rightarrow X$ almost everywhere or $X_{n} \xrightarrow{\text { a.e. }} X$
- $X_{n} \rightarrow X$ with probability 1 or $X_{n} \rightarrow X$ w.p. 1

Convergence in r th Mean

- $X_{n} \rightarrow X$ in r th mean if $E\left[|X|^{r}\right]<\infty$ for all n and

$$
E\left(\left|X_{n}-X\right|^{r}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

where $r \geq 1$

- " $X_{n} \rightarrow X$ in r th mean" is abbreviated as $X_{n} \xrightarrow{r} X$
- For $r=1, X_{n} \xrightarrow{1} X$ is written as " $X_{n} \rightarrow X$ in mean"
- For $r=2, X_{n} \xrightarrow{2} X$ is written as " $X_{n} \rightarrow X$ in mean square" or $X_{n} \xrightarrow{\text { m.s. }} X$

Convergence in Probability

- $X_{n} \rightarrow X$ in probability if

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty \text { for all } \epsilon>0
$$

- " $X_{n} \rightarrow X$ in probability" is abbreviated as $X_{n} \xrightarrow{P} X$

Convergence in Distribution

- $X_{n} \rightarrow X$ in distribution if

$$
P\left(X_{n} \leq x\right) \rightarrow P(X \leq x) \text { as } n \rightarrow \infty
$$

for all points x where $F_{X}(x)=P(X \leq x)$ is continuous

- " $X_{n} \rightarrow X$ in distribution" is abbreviated as $X_{n} \xrightarrow{D} X$
- Convergence in distribution is also termed weak convergence

Example

Let X be a Bernoulli RV taking values 0 and 1 with equal probability $\frac{1}{2}$. Let $X_{1}, X_{2}, X_{3}, \ldots$ be identical random variables given by $X_{n}=X$ for all n. The X_{n} 's are not independent but $X_{n} \xrightarrow{D} X$.
Let $Y=1-X$. Then $X_{n} \xrightarrow{D} Y$.
But $\left|X_{n}-Y\right|=1$ and the X_{n} 's do not converge to Y in any other mode.

Relations between Modes of Convergence

Theorem

$$
\begin{aligned}
& (X \xrightarrow{\text { a.s. }} X) \\
& \left(X_{n} \xrightarrow{P} X\right) \quad \Rightarrow \quad(X \xrightarrow{D} X) \\
& \pi \\
& \left(X_{n} \xrightarrow{r} X\right)
\end{aligned}
$$

for any $r \geq 1$.
Theorem
If $X_{n} \xrightarrow{D} c$, where c is a constant, then $X_{n} \xrightarrow{P} c$.

Weak Law of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\frac{S_{n}}{n} \xrightarrow{P} \mu \quad \text { as } n \rightarrow \infty .
$$

Proof.

- Since μ is a constant, it is enough to show convergence in distribution
- It is enough to show that the characteristic functions of $\frac{S_{n}}{n}$ converge to the characteristic function of μ
- By Taylor's theorem, the characteristic function of the X_{n} 's is

$$
\phi_{X}(t)=E\left[e^{i t x}\right]=1+i \mu t+o(t)
$$

- The characteristic function of $\frac{S_{n}}{n}$ is

$$
\phi_{n}(t)=\left[\phi_{X}\left(\frac{t}{n}\right)\right]^{n}=\left[1+i \mu \frac{t}{n}+o\left(\frac{t}{n}\right)\right]^{n} \rightarrow \exp (i t \mu)
$$

Strong Law of Large Numbers

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables. Then

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i} \rightarrow \mu \quad \text { almost surely, as } n \rightarrow \infty
$$

for some constant μ, if and only if $E\left|X_{1}\right|<\infty$. In this case, $\mu=E\left[X_{1}\right]$.

Central Limit Theorem

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^{2}. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}} \xrightarrow{D} N(0,1) \quad \text { as } n \rightarrow \infty .
$$

Proof.

- It is enough to show that the characteristic functions of $\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}$ converge to the characteristic function of $Z \sim N(0,1)$ which is $e^{-\frac{t^{2}}{2}}$
- Let $\phi_{Y}(t)$ be the characteristic function of $Y_{n}=\frac{X_{n}-\mu}{\sigma}$
- By Taylor's theorem, the characteristic function of the Y_{n} 's is

$$
\phi_{Y}(t)=E\left[e^{i t Y}\right]=1-\frac{t^{2}}{2}+o\left(t^{2}\right)
$$

- The characteristic function of $\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} Y_{j}$ is

$$
\psi_{n}(t)=\left[\phi_{Y}\left(\frac{t}{\sqrt{n}}\right)\right]^{n}=\left[1-\frac{t^{2}}{2 n}+o\left(\frac{t^{2}}{n}\right)\right]^{n} \rightarrow \exp \left(-\frac{t^{2}}{2}\right)
$$

Questions?

