Convergence of Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

April 3, 2013

Motivation

Theorem (Weak Law of Large Numbers)

Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite means μ . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\frac{S_n}{n} \xrightarrow{P} \mu \qquad \text{as } n \to \infty.$$

Theorem (Central Limit Theorem)

Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^2 . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{D} N(0, 1) \qquad \text{as } n \to \infty.$$

Modes of Convergence

- Let X, X₁, X₂,... be random variables on some probability space (Ω, F, P)
- There are four ways of defining $X_n \to X$ as $n \to \infty$
 - Convergence almost surely
 - Convergence in rth mean
 - Convergence in probability
 - Convergence in distribution

Convergence Almost Surely

- X_n → X almost surely if {ω ∈ Ω : X_n(ω) → X(ω) as n → ∞} is an event whose probability is 1
- " $X_n \rightarrow X$ almost surely" is abbreviated as $X_n \xrightarrow{\text{a.s.}} X$
- Other notations are
 - $X_n \to X$ almost everywhere or $X_n \xrightarrow{\text{a.e.}} X$
 - $X_n \rightarrow X$ with probability 1 or $X_n \rightarrow X$ w.p. 1

Convergence in rth Mean

• $X_n \to X$ in *r*th mean if $E[|X|'] < \infty$ for all *n* and

$$E\left(\left|X_{n}-X\right|^{r}
ight)
ightarrow 0$$
 as $n
ightarrow\infty$

where $r \ge 1$

- " $X_n \to X$ in *r*th mean" is abbreviated as $X_n \xrightarrow{r} X$
- For r = 1, $X_n \xrightarrow{1} X$ is written as " $X_n \to X$ in mean"
- For r = 2, $X_n \xrightarrow{2} X$ is written as " $X_n \to X$ in mean square" or $X_n \xrightarrow{\text{m.s.}} X$

Convergence in Probability

• $X_n \to X$ in probability if

 $P(|X_n - X| > \epsilon) \rightarrow 0 \text{ as } n \rightarrow \infty \text{ for all } \epsilon > 0$

• " $X_n \to X$ in probability" is abbreviated as $X_n \xrightarrow{P} X$

Convergence in Distribution

• $X_n \rightarrow X$ in distribution if

$$P(X_n \leq x) \rightarrow P(X \leq x)$$
 as $n \rightarrow \infty$

for all points *x* where $F_X(x) = P(X \le x)$ is continuous

- " $X_n \to X$ in distribution" is abbreviated as $X_n \xrightarrow{D} X$
- Convergence in distribution is also termed weak convergence

Example

Let *X* be a Bernoulli RV taking values 0 and 1 with equal probability $\frac{1}{2}$. Let X_1, X_2, X_3, \ldots be identical random variables given by $X_n = X$ for all *n*. The X_n 's are not independent but $X_n \xrightarrow{D} X$. Let Y = 1 - X. Then $X_n \xrightarrow{D} Y$. But $|X_n - Y| = 1$ and the X_n 's do not converge to *Y* in any other mode.

Relations between Modes of Convergence

Theorem

$$(X_n \xrightarrow{a.s.} X)$$

$$(X_n \xrightarrow{P} X) \Rightarrow (X_n \xrightarrow{D} X)$$

$$(X_n \xrightarrow{r} X)$$

for any $r \geq 1$.

Theorem If $X_n \xrightarrow{D} c$, where *c* is a constant, then $X_n \xrightarrow{P} c$.

Weak Law of Large Numbers

Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite means μ . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\frac{S_n}{n} \xrightarrow{P} \mu$$
 as $n \to \infty$.

Proof.

- Since μ is a constant, it is enough to show convergence in distribution
- It is enough to show that the characteristic functions of $\frac{S_n}{n}$ converge to the characteristic function of μ
- By Taylor's theorem, the characteristic function of the X_n's is

$$\phi_X(t) = E\left[e^{itX}\right] = 1 + i\mu t + o(t)$$

• The characteristic function of $\frac{S_n}{n}$ is

$$\phi_n(t) = \left[\phi_X\left(\frac{t}{n}\right)\right]^n = \left[1 + i\mu\frac{t}{n} + o\left(\frac{t}{n}\right)\right]^n \to \exp(it\mu)$$

Strong Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables. Then

$$rac{1}{n}\sum_{i=1}^n X_i o \mu \quad ext{almost surely, as } n o \infty.$$

for some constant μ , if and only if $E|X_1| < \infty$. In this case, $\mu = E[X_1]$.

Central Limit Theorem

Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^2 . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\frac{S_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{D} N(0, 1) \qquad \text{as } n \to \infty.$$

Proof.

- It is enough to show that the characteristic functions of $\frac{S_n n\mu}{\sqrt{n\sigma^2}}$ converge to the characteristic function of $Z \sim N(0, 1)$ which is $e^{-\frac{L^2}{2}}$
- Let $\phi_{Y}(t)$ be the characteristic function of $Y_n = \frac{X_n \mu}{\sigma}$
- By Taylor's theorem, the characteristic function of the Y_n's is

$$\phi_Y(t) = E\left[e^{itY}\right] = 1 - \frac{t^2}{2} + o(t^2)$$

• The characteristic function of $\frac{S_n - n\mu}{\sqrt{n\sigma^2}} = \frac{1}{\sqrt{n}} \sum_{j=1}^n Y_j$ is

$$\psi_n(t) = \left[\phi_Y\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left[1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right)\right]^n \to \exp\left(-\frac{t^2}{2}\right)$$

11/12

Questions?