Discrete Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 6, 2013

Discrete Random Variables

Definition

A random variable is called discrete if it takes values only in some countable subset $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of \mathbb{R}.

Definition

A discrete random variable X has a probability mass function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=P[X=x]$

Example

- Bernoulli random variable

$$
\Omega=\{0,1\}
$$

$$
P[X=x]= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0\end{cases}
$$

where $0 \leq p \leq 1$

Binomial Random Variable

- An experiment is conducted n times and it succeeds each time with probability p and fails each time with probability $1-p$
- The sample space is $\Omega=\{0,1\}^{n}$ where 1 denotes success and 0 denotes failure
- Let X denote the total number of successes
- $X \in\{0,1,2, \ldots, n\}$
- The probability mass function of X is

$$
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { if } 0 \leq k \leq n
$$

- X is said to have the binomial distribution with parameters n and p
- X is the sum of n Bernoulli random variables $Y_{1}+Y_{2}+\cdots+Y_{n}$

Binomial Random Variable PMF

Poisson Random Variable

- The sample space of a Poisson random variable is $\Omega=\{0,1,2,3, \ldots\}$
- The probability mass function is

$$
P[X=k]=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad k=0,1,2, \ldots
$$

where $\lambda>0$

Poisson Random Variable PMF

Independence

- Discrete random variables X and Y are independent if the events $\{X=x\}$ and $\{Y=y\}$ are independent for all x and y
- A family of discrete random variables $\left\{X_{i}: i \in I\right\}$ is an independent family if

$$
P\left(\bigcap_{i \in J}\left\{X_{i}=x_{i}\right\}\right)=\prod_{i \in J} P\left(X_{i}=x_{i}\right)
$$

for all sets $\left\{x_{i}: i \in I\right\}$ and for all finite subsets $J \in I$

Example

Binary symmetric channel with crossover probability p

If the input is equally likely to be 0 or 1 , are the input and output independent?

Consequences of Independence

- If X and Y are independent, then the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any subsets A and B of \mathbb{R}
- If X and Y are independent, then for any functions $g, h: \mathbb{R} \rightarrow \mathbb{R}$ the random variables $g(X)$ and $h(Y)$ are independent
- Let X and Y be discrete random variables with probability mass functions $f_{X}(x)$ and $f_{Y}(y)$ respectively
Let $f_{X, Y}(x, y)=P(\{X=x\} \cap\{Y=y\})$ be the joint probability mass function of X and Y
X and Y are independent if and only if

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y \in \mathbb{R}
$$

Exercise

- Let X and Y be independent discrete random variables taking values in the positive integers
- Both of them have the same probability mass function given by

$$
P[X=k]=P[Y=k]=\frac{1}{2^{k}} \quad \text { for } k=1,2,3, \ldots
$$

- Find the following
- $P(\min \{X, Y\} \leq x)$
- $P[X=Y]$
- $P[X>Y]$
- $P[X \geq k Y]$ for a given positive integer k
- $P[X$ divides $Y]$

Questions?

