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Expectation of Discrete Random Variables

Definition
The expectation of a discrete random variable X with probability mass
function f is defined to be

E(X ) =
∑

x :f (x)>0

xf (x)

whenever this sum is absolutely convergent. The expectation is also called
the mean value or the expected value of the random variable.

Example

• Bernoulli random variable
Ω = {0, 1}

f (x) =

{
p if x = 1
1− p if x = 0

where 0 ≤ p ≤ 1

E(X ) = 1 · p + 0 · (1− p) = p
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What is absolute convergence?
• A discrete random variable can take a countable number of variables

• Its expectation may involve a countable sum
∑∞

i=1 ai

• The sum
∑∞

i=1 ai is called an infinite series and sn =
∑n

i=1 ai are called
the partial sums of the series

• The series is said to converge if the sequence {sn} converges

• A series
∑

ai is said to converge absolutely if the series
∑
|ai |

converges

Example

• A series which converges but does not converge absolutely
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Why do we need absolute convergence?
• Consider a rearrangement of the series
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where two positive terms are followed by one negative term
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• Since
1

4k − 3
+

1
4k − 1

− 1
2k

> 0

the rearrranged series sums to a value greater than 5
6

Theorem
If
∑

ai is a series which converges absolutely, then every rearrangement of∑
ai converges, and they all converge to the same sum

Considering only absolutely convergent sums makes the expectation
well-defined.

E(X ) =
∑

x :f (x)>0

xf (x)
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Expectations of Functions of Discrete RVs
• If X has pmf f and g : R→ R, then

E(g(X )) =
∑

x

g(x)f (x)

whenever this sum is absolutely convergent.

Example

• Suppose X takes values −2,−1, 1, 3 with probabilities 1
4 ,

1
8 ,

1
4 ,

3
8

respectively.

• Consider Y = X 2. It takes values 1, 4, 9 with probabilities 3
8 ,

1
4 ,

3
8

respectively.

E(Y ) =
∑

y

yP(Y = y) = 1 · 3
8

+ 4 · 1
4

+ 9 · 3
8

=
19
4

Alternatively,

E(Y ) = E(X 2) =
∑

x

x2P(X = x) = 4 · 1
4

+ 1 · 1
8

+ 1 · 1
4

+ 9 · 3
8

=
19
4
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Some Properties of Expectation
• If a, b ∈ R, then E(aX + bY ) = aE(X ) + bE(Y )

• If X and Y are independent, E(XY ) = E(X )E(Y )

• X and Y are said to be uncorrelated if E(XY ) = E(X )E(Y )

• Independent random variables are uncorrelated but uncorrelated
random variables need not be independent

Example
Y and Z are independent random variables such that Z is equally likely to be
1 or −1 and Y is equally likely to be 1 or 2.
Let X = YZ . Then X and Y are uncorrelated but not independent.
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Moments
• If k is a positive integer, the k th moment mk of X is defined to be

mk = E(X k )

• The k th central moment σk is

σk = E
[
(X −m1)k

]
• The first moment is the same as the expectation m1 = E(X )

• The second central moment σ2 = E [(X −m1)2] is called the variance

• The positive square root of the variance is called the standard deviation

σ =
√

E [(X −m1)2]
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Some Properties of Variance
• var(X ) = E(X 2)− [E(X )]2

• For a ∈ R, var(aX ) = a2 var(X )

• var(X + Y ) = var(X ) + var(Y ) if X and Y are uncorrelated
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Questions?
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