Generating Functions

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 22, 2013

Generating Functions

Definition

The generating function of a sequence of real numbers $\left\{a_{i}: i=0,1,2, \ldots\right\}$ is defined by

$$
G(s)=\sum_{i=0}^{\infty} a_{i} s^{i}
$$

for $s \in \mathbb{R}$ for which the sum converges.

Example

Consider the sequence $a_{i}=2^{-i}, i=0,1,2, \ldots$.

$$
G(s)=\sum_{i=0}^{\infty}\left(\frac{s}{2}\right)^{i}=\frac{1}{1-\frac{s}{2}} \quad \text { for }|s|<2 .
$$

Definition

Suppose X is a discrete random variable taking non-negative integer values $\{0,1,2, \ldots\}$. The generating function of X is the generating function of its probability mass function.

$$
G(s)=\sum_{i=0}^{\infty} P[X=i] s^{i}=E\left[s^{X}\right]
$$

Examples of Generating Functions

- Constant RV: Suppose $P(X=c)=1$ for some fixed $c \in \mathbb{Z}^{+}$

$$
G(s)=E\left(s^{X}\right)=s^{c}
$$

- Bernoulli RV: $P(X=1)=p$ and $P(X=0)=1-p$

$$
G(s)=1-p+p s
$$

- Geometric RV: $P(X=k)=p(1-p)^{k-1}$ for $k \geq 1$

$$
G(s)=\sum_{k=1}^{\infty} s^{k} p(1-p)^{k-1}=\frac{p s}{1-s(1-p)}
$$

- Poisson RV: $P[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k \geq 0$

$$
G(s)=\sum_{k=0}^{\infty} s^{k} \frac{e^{-\lambda} \lambda^{k}}{k!}=e^{\lambda(s-1)}
$$

Moments from the Generating Function

Theorem

If X has generating function $G(s)$ then

- $E[X]=G^{(1)}(1)$
- $E[X(X-1) \cdots(X-k+1)]=G^{(k)}(1)$
where $G^{(k)}$ is the k th derivative of $G(s)$.
Result
$\operatorname{var}(X)=G^{(2)}(1)+G^{(1)}(1)-G^{(1)}(1)^{2}$

Example (Geometric RV)

A geometric RV X has generating function $G(s)=\frac{p s}{1-s(1-p)} \cdot \operatorname{var}(X)=$?

$$
\begin{aligned}
G^{(1)}(1) & =\left.\frac{\partial}{\partial s} \frac{p s}{1-s(1-p)}\right|_{s=1}=\frac{1}{p} \\
G^{(2)}(1) & =\left.\frac{\partial^{2}}{\partial s^{2}} \frac{p s}{1-s(1-p)}\right|_{s=1}=\frac{2(1-p)}{p}+\frac{2(1-p)^{2}}{p^{2}} \\
\operatorname{var}(X) & =\frac{1-p}{p^{2}}
\end{aligned}
$$

Generating Function of a Sum of Independent RVs

Theorem

If X and Y are independent, $G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$

Example (Binomial RV)

Using above theorem, how can we find the generating function of a binomial random variable?
A binomial random variable with parameters n and p is a sum of n independent Bernoulli random variables.

$$
S=X_{1}+X_{2}+\cdots+X_{n-1}+X_{n}
$$

where each X_{i} has generating function $G(s)=1-p+p s=q+p s$.

$$
G_{s}(s)=[G(s)]^{n}=[q+p s]^{n}
$$

Example (Sum of independent Poisson RVs)

Let X and Y be independent Poisson random variables with parameters λ and μ respectively. What is the distribution of $X+Y$?
Poisson with parameter $\lambda+\mu$

Sum of a Random Number of Independent RVs

Theorem

Let X_{1}, X_{2}, \ldots is a sequence of independent identically distributed (iid) random variables with common generating function $G_{X}(s)$. Let N be a positive integer-valued random variable which is independent of the X_{i} 's and has generating function $G_{N}(s)$. Then

$$
S=X_{1}+X_{2}+\cdots+X_{N}
$$

has generating function given by

$$
G_{s}(s)=G_{N}\left(G_{X}(s)\right)
$$

Example

A group of hens lay N eggs where N has a Poisson distribution with parameter λ. Each egg results in a healthy chick with probability p independently of the other eggs. Let K be the number of healthy chicks. Find the distribution of K.
Solution Poisson with parameter λp

Questions?

