Hypothesis Testing

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 13, 2013

What is a Hypothesis?

One situation among a set of possible situations

Example (Radar)

EM waves are transmitted and the reflections observed.

Null Hypothesis Plane absent

Alternative Hypothesis Plane present

For a given set of observations, either hypothesis may be true.

What is Hypothesis Testing?

- A statistical framework for deciding which hypothesis is true
- Under each hypothesis the observations are assumed to have a known distribution
- Consider the case of two hypotheses (binary hypothesis testing)

$$H_0$$
 : $\mathbf{Y} \sim P_0$
 H_1 : $\mathbf{Y} \sim P_1$

Y is the random observation vector belonging to observation set $\Gamma \subseteq \mathbb{R}^n$ for $n \in \mathbb{N}$

The hypotheses are assumed to occur with given prior probabilities

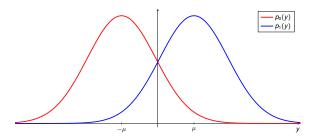
$$Pr(H_0 \text{ is true}) = \pi_0$$

 $Pr(H_1 \text{ is true}) = \pi_1$

where $\pi_0 + \pi_1 = 1$.

• Let observation set $\Gamma = \mathbb{R}$ and $\mu > 0$

$$H_0$$
: $Y \sim N(-\mu, \sigma^2)$
 H_1 : $Y \sim N(\mu, \sigma^2)$



- Any point in Γ can be generated under both H_0 and H_1
- What is a good decision rule for this hypothesis testing problem which takes the prior probabilities into account?

What is a Decision Rule?

 A decision rule for binary hypothesis testing is a partition of Γ into Γ₀ and Γ₁ such that

$$\delta(\mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{y} \in \Gamma_0 \\ 1 & \text{if } \mathbf{y} \in \Gamma_1 \end{cases}$$

We decide H_i is true when $\delta(\mathbf{y}) = i$ for $i \in \{0, 1\}$

 For the location testing with Gaussian error problem, one possible decision rule is

$$\Gamma_0 = (-\infty, 0]$$
 $\Gamma_1 = (0, \infty)$

and another possible decision rule is

$$\Gamma_0 = (-\infty, -100) \cup (-50, 0)$$

 $\Gamma_1 = [-100, -50] \cup [0, \infty)$

 Given that partitions of the observation set define decision rules, what is the optimal partition?

Which is the Optimal Decision Rule?

- Minimizing the probability of decision error gives the optimal decision rule
- For the binary hypothesis testing problem of H₀ versus H₁, the conditional decision error probability given H_i is true is

$$P_{e|i}$$
 = Pr [Deciding H_{1-i} is true| H_i is true]
 = Pr [$Y \in \Gamma_{1-i}|H_i$]
 = $1 - Pr[Y \in \Gamma_i|H_i]$
 = $1 - P_{c|i}$

Probability of decision error is

$$P_e = \pi_0 P_{e|0} + \pi_1 P_{e|1}$$

Probability of correct decision is

$$P_c = \pi_0 P_{c|0} + \pi_1 P_{c|1} = 1 - P_e$$

Which is the Optimal Decision Rule?

- Maximizing the probability of correct decision will minimize probability of decision error
- Probability of correct decision is

$$P_{c} = \pi_{0} P_{c|0} + \pi_{1} P_{c|1}$$

$$= \pi_{0} \int_{y \in \Gamma_{0}} p_{0}(y) dy + \pi_{1} \int_{y \in \Gamma_{1}} p_{1}(y) dy$$

- If a point y in Γ belongs to Γ_i, its contribution to P_c is proportional to π_ip_i(y)
- To maximize P_c , we choose the partition $\{\Gamma_0, \Gamma_1\}$ as

$$\Gamma_0 = \{ y \in \Gamma | \pi_0 p_0(y) \ge \pi_1 p_1(y) \}$$

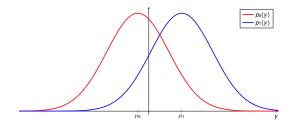
$$\Gamma_1 = \{ y \in \Gamma | \pi_1 p_1(y) > \pi_0 p_0(y) \}$$

• The points y for which $\pi_0 p_0(y) = \pi_1 p_1(y)$ can be in either Γ_0 and Γ_1 (the optimal decision rule is not unique)

• Let $\mu_1 > \mu_0$ and $\pi_0 = \pi_1 = \frac{1}{2}$

$$H_0$$
 : $Y = \mu_0 + Z$
 H_1 : $Y = \mu_1 + Z$

where $Z \sim N(0, \sigma^2)$



$$\rho_0(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_0)^2}{2\sigma^2}} \\
\rho_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_1)^2}{2\sigma^2}}$$

$$p_1(y) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-\mu_1)}{2\sigma^2}}$$

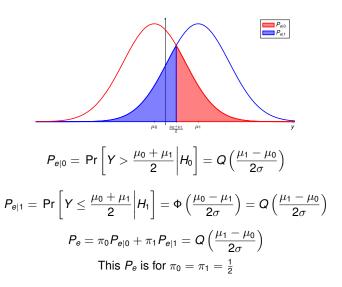
• Optimal decision rule is given by the partition $\{\Gamma_0,\Gamma_1\}$

$$\Gamma_0 = \{ y \in \Gamma | \pi_0 p_0(y) \ge \pi_1 p_1(y) \}
\Gamma_1 = \{ y \in \Gamma | \pi_1 p_1(y) > \pi_0 p_0(y) \}$$

• For $\pi_0 = \pi_1 = \frac{1}{2}$

$$\Gamma_0 = \left\{ y \in \Gamma \middle| y \le \frac{\mu_1 + \mu_0}{2} \right\}$$

$$\Gamma_1 = \left\{ y \in \Gamma \middle| y > \frac{\mu_1 + \mu_0}{2} \right\}$$



- Suppose $\pi_0 \neq \pi_1$
- Optimal decision rule is still given by the partition $\{\Gamma_0, \Gamma_1\}$

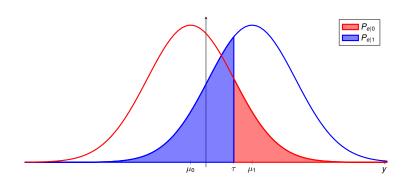
$$\Gamma_0 = \{ y \in \Gamma | \pi_0 \rho_0(y) \ge \pi_1 \rho_1(y) \}
\Gamma_1 = \{ y \in \Gamma | \pi_1 \rho_1(y) > \pi_0 \rho_0(y) \}$$

The partitions specialized to this problem are

$$\Gamma_{0} = \left\{ y \in \Gamma \middle| y \le \frac{\mu_{1} + \mu_{0}}{2} + \frac{\sigma^{2}}{(\mu_{1} - \mu_{0})} \log \frac{\pi_{0}}{\pi_{1}} \right\}
\Gamma_{1} = \left\{ y \in \Gamma \middle| y > \frac{\mu_{1} + \mu_{0}}{2} + \frac{\sigma^{2}}{(\mu_{1} - \mu_{0})} \log \frac{\pi_{0}}{\pi_{1}} \right\}$$

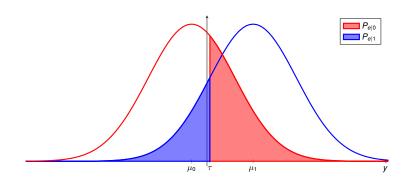
Suppose $\pi_0 = 0.6$ and $\pi_1 = 0.4$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} + \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$



Suppose $\pi_0 = 0.4$ and $\pi_1 = 0.6$

$$\tau = \frac{\mu_1 + \mu_0}{2} + \frac{\sigma^2}{(\mu_1 - \mu_0)} \log \frac{\pi_0}{\pi_1} = \frac{\mu_1 + \mu_0}{2} - \frac{0.4054\sigma^2}{(\mu_1 - \mu_0)}$$



M-ary Hypothesis Testing

• *M* hypotheses with prior probabilities π_i , i = 1, ..., M

$$\begin{array}{cccc} H_1 & : & \textbf{Y} \sim P_1 \\ H_2 & : & \textbf{Y} \sim P_2 \\ \vdots & & \vdots \\ H_M & : & \textbf{Y} \sim P_M \end{array}$$

• A decision rule for M-ary hypothesis testing is a partition of Γ into M disjoint regions $\{\Gamma_i|i=1,\ldots,M\}$ such that

$$\delta(\mathbf{y}) = i \text{ if } \mathbf{y} \in \Gamma_i$$

We decide H_i is true when $\delta(\mathbf{y}) = i$ for $i \in \{1, ..., M\}$

· Minimum probability of error rule is

$$\delta_{\mathsf{MPE}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} \pi_i p_i(\mathbf{y})$$

Maximum A Posteriori Decision Rule

• The a posteriori probability of H_i being true given observation \mathbf{y} is

$$P\left[H_i \text{ is true} \middle| \mathbf{y}\right] = \frac{\pi_i p_i(\mathbf{y})}{p(\mathbf{y})}$$

• The MAP decision rule is given by

$$\delta_{\mathsf{MAP}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} P\left[H_i \text{ is true} \middle| \mathbf{y}\right] = \delta_{\mathsf{MPE}}(\mathbf{y})$$

MAP decision rule = MPE decision rule

Maximum Likelihood Decision Rule

The ML decision rule is given by

$$\delta_{\mathsf{ML}}(\mathbf{y}) = \arg\max_{1 \leq i \leq M} p_i(\mathbf{y})$$

- If the *M* hypotheses are equally likely, $\pi_i = \frac{1}{M}$
- The MPE decision rule is then given by

$$\delta_{\mathsf{MPE}}(\mathbf{y}) = \max_{1 \leq i \leq M} \pi_i p_i(\mathbf{y}) = \delta_{\mathsf{ML}}(\mathbf{y})$$

For equal priors, ML decision rule = MPE decision rule

Questions?