Independence

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 23, 2013

Independence

Definition

Events A and B are called independent if

$$
P(A \cap B)=P(A) P(B) .
$$

More generally, a family $\left\{A_{i}: i \in I\right\}$ is called independent if

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

for all finite subsets J of I.

Examples

- A fair coin is tossed twice. The first toss is independent of the second toss.
- Pick a card at random from a pack of 52 cards. The suit of the card is independent of its rank.
- Two fair dice are rolled. Is the the sum of the faces independent of the number shown by the first die?

Questions

- Can an event be independent of itself?
- What is the relation between independence and mutual exclusivity?
- What is the relation between independence and conditional probability?
- Does pairwise independence imply independence?
$\Omega=\{a b c, a c b, c a b, c b a, b c a, b a c, a a a, b b b, c c c\}$ with each outcome being equally likely.
Let A_{k} be the event that the k th letter is a.

$$
\begin{aligned}
P\left(A_{i}\right) & =\frac{1}{3} \\
P\left(A_{i} \cap A_{j}\right) & =\frac{1}{9}, \quad i \neq j \\
P\left(A_{1} \cap A_{2} \cap A_{3}\right) & =\frac{1}{9}
\end{aligned}
$$

$\left\{A_{1}, A_{2}, A_{3}\right\}$ are pairwise independent but not independent.

Conditional Independence

Definition

Let C be an event with $P(C)>0$. Two events A and B are called conditionally independent given C if

$$
P(A \cap B \mid C)=P(A \mid C) P(B \mid C) .
$$

Example

- We have two coins; the first is fair and the second has heads on both sides. A coin is picked at random and tossed twice. Are the results of the two tosses independent? Are they independent if we know which coin was picked?

Questions?

