Some Results on Jointly Distributed Discrete Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 27, 2013

Jointly Distributed Discrete Random Variables

Definition

The joint probability distribution function of discrete RVS X and Y is given by

$$
F(x, y)=P(X \leq x \text { and } Y \leq y) .
$$

The joint probability mass function is given by

$$
f(x, y)=P(X=x \text { and } Y=y) .
$$

Definition

Given the joint pmf, the marginal pmfs are given by

$$
\begin{aligned}
& P(X=x)=\sum_{y} f(x, y) \\
& P(Y=y)=\sum_{x} f(x, y)
\end{aligned}
$$

Result
If X and Y have a joint pmf f, then $E[g(X, Y)]=\sum_{x, y} g(x, y) f(x, y)$

Cauchy-Schwarz Inequality

Theorem

For random variables X and Y,

$$
[E(X Y)]^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)
$$

Proof.

For $a \in \mathbb{R}$, let $Z=a X-Y$. Then

$$
0 \leq E\left[Z^{2}\right]=a^{2} E\left(X^{2}\right)-2 a E(X Y)+E\left(Y^{2}\right)
$$

The quadratic in a can have at most one real root. So the discriminant is non-positive.
If $E\left(X^{2}\right)>0$, this gives

$$
\frac{4[E(X Y)]^{2}-4 E\left(X^{2}\right) E\left(Y^{2}\right)}{2 E\left(X^{2}\right)} \leq 0
$$

which proves the result.
If $E\left(X^{2}\right)=0$, then $P(X=0)=1$ and the result follows.

Conditional Distribution

Definition

The conditional probability distribution function of Y given $X=x$ is defined as

$$
F_{Y \mid X}(y \mid x)=P(Y \leq y \mid X=x)
$$

for any x such that $P(X=x)>0$.
The conditional probability mass function of Y given $X=x$ is defined as

$$
f_{Y \mid X}(y \mid x)=P(Y=y \mid X=x)
$$

Definition

The conditional expectation of Y given $X=x$ is defined as

$$
E(Y \mid X=x)=\sum_{y} y f_{Y \mid X}(y \mid x)
$$

The conditional expectation is a function of the conditioning random variable
i.e. $\psi(X)=E(Y \mid X)$

Law of Iterated Expectation

Theorem

The conditional expectation $\psi(X)=E(Y \mid X)$ satisfies

$$
E[E(Y \mid X)]=E(Y)
$$

Example

A group of hens lay N eggs where N has a Poisson distribution with parameter λ. Each egg results in a healthy chick with probability p independently of the other eggs. Let K be the number of chicks. Find $E(K)$.

Theorem

The conditional expectation $\psi(X)=E(Y \mid X)$ satisfies

$$
E[\psi(X) g(X)]=E[Y g(X)]
$$

for any function g for which both expectations exist.

Sum of Random Variables

Theorem

For discrete random variables X and Y with joint pmf $f(x, y)$, the pmf of $X+Y$ is given by

$$
P(X+Y=z)=\sum_{x} f(x, z-x)=\sum_{y} f(z-y, y)
$$

If X and Y are independent, the pmf of $X+Y$ is the convolution of the pmfs of X and Y.

$$
P(X+Y=z)=\sum_{x} f_{X}(x) f_{Y}(z-x)=\sum_{y} f_{X}(z-y) f_{Y}(y)
$$

Questions?

