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Parameter Estimation
• Hypothesis testing was about making a choice between discrete states

of nature

• Parameter or point estimation is about choosing from a continuum of
possible states

Example
Consider the signal below

y(t) = A sin(2πfc t + φ) + n(t)

where n(t) is a noise signal.

• The amplitude A is a real number

• The frequency fc is a positive real number in some known interval

• The phase φ can take any real value in the interval [0, 2π)

• We are interested in estimating A, fc and φ
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System Model for Parameter Estimation
• Consider a family of distributions

Y ∼ Pθ, θ ∈ Λ

where the observation vector Y ∈ Γ ⊆ Rn for n ∈ N and Λ ⊆ Rm is the
parameter space

Example

Y = A + Z

where A is an unknown parameter and Z is a standard Gaussian RV. Here
θ = A.

• The goal of parameter estimation is to find θ given Y

• An estimator is a function from the observation space to the parameter
space

θ̂ : Γ→ Λ
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Which is the Optimal Estimator?
• Assume there is a cost function C

C : Λ× Λ→ R

such that C[a, θ] is the cost of estimating the true value of θ as a

• Examples of cost functions

Squared Error C[a, θ] = (a− θ)2

Absolute Error C[a, θ] = |a− θ|

Threshold Error C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆
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Which is the Optimal Estimator?
• Suppose that the parameter θ is the realization of a random variable Θ

• With an estimator θ̂ we associate a conditional cost or risk conditioned
on θ

rθ(θ̂) = Eθ

{
C
[
θ̂(Y), θ

]}
• The average risk or Bayes risk is given by

R(θ̂) = E
{

rΘ(θ̂)
}

• The optimal estimator is the one which minimizes the Bayes risk
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Which is the Optimal Estimator?
• Given that

rθ(θ̂) = Eθ

{
C
[
θ̂(Y), θ

]}
= E

{
C
[
θ̂(Y),Θ

] ∣∣∣∣Θ = θ

}
the average risk or Bayes risk is given by

R(θ̂) = E
{

C
[
θ̂(Y),Θ

]}
= E

{
E
{

C
[
θ̂(Y),Θ

] ∣∣∣∣Y}}
• The optimal estimate for θ can be found by minimizing for each Y = y

the posterior cost

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}
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Minimum-Mean-Squared-Error (MMSE) Estimation
• C[a, θ] = (a− θ)2

• The posterior cost is given by

E
{

(θ̂(y)−Θ)2
∣∣∣∣Y = y

}
=

[
θ̂(y)

]2

−2θ̂(y)E
{

Θ

∣∣∣∣Y = y
}

+E
{

Θ2
∣∣∣∣Y = y

}
• The Bayes estimate is given by

θ̂MMSE (y) = E
{

Θ

∣∣∣∣Y = y
}
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Example 1: MMSE Estimation
• Suppose X and Y are jointly Gaussian random variables

• Let the joint pdf be given by

pXY (x , y) =
1

2π|Σ| 12
exp

(
−1

2
(s− µ)T Σ−1(s− µ)

)

where s =

[
x
y

]
, µ =

[
µx

µy

]
and Σ =

[
σ2

x ρσxσy

ρσxσy σ2
y

]
• Suppose Y is observed and we want to estimate X

• The MMSE estimate of X is

X̂MMSE (y) = E
[
X
∣∣∣∣Y = y

]
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Example 1: MMSE Estimation
• The conditional distribution of X given Y = y is a Gaussian RV with

mean
µX |y = µx +

σx

σy
ρ(y − µy )

and variance
σ2

X |y = (1− ρ2)σ2
x

• Thus the MMSE estimate of X given Y = y is

X̂MMSE (y) = µx +
σx

σy
ρ(y − µy )
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Example 2: MMSE Estimation
• Suppose A is a Gaussian RV with mean µ and known variance v2

• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi = A + Ni

where Ni ’s are independent Gaussian RVs with mean 0 and known
variance σ2

• Suppose A is independent of the Ni ’s

• The MMSE estimate is given by

ÂMMSE (y) =
Mv2

σ2 Â1(y) + µ

Mv2

σ2 + 1

where Â1(y) = 1
M

∑M
i=1 yi
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Maximum A Posteriori (MAP) Estimation
• In some situations, the conditional mean may be difficult to compute

• An alternative is to use MAP estimation

• The MAP estimator is given by

θ̂MAP(y) = argmax
θ

p
(
θ

∣∣∣∣Y = y
)

where p is the conditional density of Θ given Y.

• It can be obtained as the optimal estimator for the threshold cost
function

C[a, θ] =

{
0 if |a− θ| ≤ ∆
1 if |a− θ| > ∆

for small ∆ > 0
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Maximum A Posteriori (MAP) Estimation
• For the threshold cost function, we have1

E
{

C
[
θ̂(y),Θ

] ∣∣∣∣Y = y
}

=

∫ ∞
−∞

C[θ̂(y), θ]p
(
θ

∣∣∣∣Y = y
)

dθ

=

∫ θ̂(y)−∆

−∞
p
(
θ

∣∣∣∣Y = y
)

dθ +

∫ ∞
θ̂(y)+∆

p
(
θ

∣∣∣∣Y = y
)

dθ

=

∫ ∞
−∞

p
(
θ

∣∣∣∣Y = y
)

dθ −
∫ θ̂(y)+∆

θ̂(y)−∆

p
(
θ

∣∣∣∣Y = y
)

dθ

= 1−
∫ θ̂(y)+∆

θ̂(y)−∆

p
(
θ

∣∣∣∣Y = y
)

dθ

• The Bayes estimate is obtained by maximizing the integral in the last
equality

1Assume a scalar parameter θ for illustration
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Maximum A Posteriori (MAP) Estimation

θ̂(y)

p(θ|Y = y) ∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

• The shaded area is the integral
∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

dθ

• To maximize this integral, the location of θ̂(y) should be chosen to be
the value of θ which maximizes p(θ|Y = y)
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Maximum A Posteriori (MAP) Estimation

θ̂MAP(y)

p(θ|Y = y) ∫ θ̂(y)+∆

θ̂(y)−∆
p
(
θ

∣∣∣∣Y = y
)

• This argument is not airtight as p(θ|Y = y) may not be symmetric at the
maximum

• But the MAP estimator is widely used as it is easier to compute than the
MMSE estimator
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Maximum Likelihood (ML) Estimation
• The ML estimator is given by

θ̂ML(y) = argmax
θ

p
(

Y = y
∣∣∣∣θ)

where p is the conditional density of Y given Θ.

• It is the same as the MAP estimator when the prior probability
distribution of Θ is uniform

• It is also used when the prior distribution is not known
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Example 1: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, µ is unknown and σ2 is known

• The ML estimate is given by

µ̂ML(y) =
1
M

M∑
i=1

yi
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Example 2: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ N (µ, σ2)

where Yi ’s are independent, both µ and σ2 are unknown

• The ML estimates are given by

µ̂ML(y) =
1
M

M∑
i=1

yi

σ̂2
ML(y) =

1
M

M∑
i=1

(yi − µ̂ML(y))2
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Example 3: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ Bernoulli(p)

where Yi ’s are independent and p is unknown

• The ML estimate of p is given by

p̂ML(y) =
1
M

M∑
i=1

yi
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Example 4: ML Estimation
• Suppose we observe Yi , i = 1, 2, . . . ,M such that

Yi ∼ Uniform[0, θ]

where Yi ’s are independent and θ is unknown

• The ML estimate of θ is given by

θ̂ML(y) = max (y1, y2, . . . , yM−1, yM )
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Questions?
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