Probability Spaces

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 9, 2013

Probability Theory

- Branch of mathematics which pertains to random phenomena
- Used to model uncertainty in the real world
- Applications
 - Statistical Inference
 - Communications
 - Signal Processing
 - Algorithms
 - Finance
 - Gambling

What is Probability?

 Classical definition: Ratio of outcomes favorable to an event to the total number of outcomes provided all outcomes are equally likely.

$$P(A) = \frac{N_A}{N}$$

• Relative frequency definition:

$$P(A) = \lim_{N \to \infty} \frac{N_A}{N}$$

- Axiomatic definition: A countably additive function defined on the set of events with range in the interval [0, 1].
- The axiomatic definition will be used in this course

Sample Space

Definition

The set of all possible outcomes of an experiment is called the sample space and is denoted by Ω .

Examples

- Coin toss: $\Omega = \{\text{Heads}, \text{Tails}\}$
- Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Tossing of two coins: $\Omega = \{(H, H), (T, H), (H, T), (T, T)\}$
- A box contains three balls: one red, one green and one blue. Ball is drawn, replaced and a ball is drawn again. What is Ω? Without the replacement, what is Ω?
- Coin is tossed until heads appear. What is Ω?
- Life expectancy of a random person. $\Omega = [0, 120]$ years

Events

An event is a subset of the sample space

Examples

• Coin toss: $\Omega = \{\text{Heads}, \text{Tails}\}.$

 $E = \{\text{Heads}\}$ is the event that a head appears on the flip of a coin.

• Roll of a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$.

 $E = \{2, 4, 6\}$ is the event that an even number appears.

• Life expectancy. $\Omega = [0, 120]$.

E = [50, 120] is the event that a random person lives beyond 50 years.

- Can all subsets of a sample space be events?
 - Yes, if the sample space is finite or countable
 - No, if the sample space is uncountable

Which subsets must be events?

Let \mathcal{F} be a subset of 2^{Ω} consisting of all events.

- If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$ and $A \cap B \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- $\Omega \in \mathcal{F}$

The above requirements imply

- $\phi \in \mathcal{F}$
- If $A_1, \ldots, A_n \in \mathcal{F}$, then $\bigcup_{i=1}^n A_i \in \mathcal{F}$

To deal with infinite sample spaces, ${\cal F}$ needs to be a $\sigma\text{-field}$

$\sigma\text{-fields}$

Definition

A collection \mathcal{F} of subsets of Ω is called a σ -field if it satisfies

- (a) $\phi \in \mathcal{F}$
- (b) if $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- (c) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$

Examples

- $\mathcal{F} = \{\phi, \Omega\}$ is the smallest σ -field
- If $A \subseteq \Omega$, $\mathcal{F} = \{\phi, A, A^c, \Omega\}$ is a σ -field
- 2^{Ω} is a σ -field

Probability Measure

Definition

A probability measure on (Ω, \mathcal{F}) is a function $P : \mathcal{F} \rightarrow [0, 1]$ satisfying

- (a) $P(\phi) = 0, P(\Omega) = 1$
- (b) if $A_1, A_2, \ldots \in \mathcal{F}$ is a collection of disjoint members in \mathcal{F} , then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

Examples

• Coin toss: $\Omega = \{H, T\}, \mathcal{F} = \{\phi, H, T, \Omega\}$

$$P(\phi) = 0, P(H) = p, P(T) = 1 - p, P(\Omega) = 1$$

• Roll of a die: $\Omega=\{1,2,3,4,5,6\},\,\mathcal{F}=2^{\Omega}$

$$P(A) = \sum_{i \in A} p_i$$
 for any $A \subseteq \Omega$

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω , a σ -field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}) .

Questions?