Properties of Probability Spaces

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 16, 2013

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω , a σ -field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}) .

Definition

A probability measure on (Ω, \mathcal{F}) is a function $P : \mathcal{F} \to [0, 1]$ satisfying

- (a) $P(\phi) = 0, P(\Omega) = 1$
- (b) if $A_1,A_2,\ldots\in\mathcal{F}$ is a collection of disjoint members in $\mathcal{F},$ then

$$P\left(\bigcup_{i=1}^{\infty}A_{i}
ight)=\sum_{i=1}^{\infty}P(A_{i})$$

Some Properties of Probability Spaces

•
$$P(A^c) = 1 - P(A)$$

• If $A \subseteq B$, then $P(A) \le P(B)$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \cdots + (-1)^{n+1} P(A_{1} \cap A_{2} \cap \cdots \cap A_{n})$$

•

$$P\left(\bigcap_{i=1}^{n}A_{i}\right) = \sum_{i}P(A_{i}) - \sum_{i< j}P(A_{i}\cup A_{j}) + \sum_{i< j< k}P(A_{i}\cup A_{j}\cup A_{k}) - \cdots + (-1)^{n+1}P(A_{1}\cup A_{2}\cup\cdots A_{n})$$

P is a continuous set function

Theorem

Let A_1, A_2, \ldots be an increasing sequence of events, so that $A_1 \subseteq A_2 \subseteq \cdots$. Let A be their limit

$$A=\bigcup_{i=1}^{\infty}A_i=\lim_{i\to\infty}A_i.$$

Then $P(A) = \lim_{i \to \infty} P(A_i)$. Similarly, if B_1, B_2, \dots be a decre

Similarly, if $B_1, B_2, ...$ be a decreasing sequence of events, so that $B_1 \supseteq B_2 \supseteq \cdots$. Let B be their limit

$$B = \bigcap_{i=1}^{\infty} B_i = \lim_{i \to \infty} B_i.$$

Then $P(B) = \lim_{i \to \infty} P(B_i)$.

Questions?