Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 1, 2013

Measurements in Experiments

- In many experiments, we are interested in some real-valued measurement

Example

- A coin is tossed twice. We want to count the number of heads which appear.
$\Omega=\{H H, H T, T H, T T\}$
Let $X(\omega)$ be the number of heads for $\omega \in \Omega$.

$$
X(H H)=2, X(H T)=1, X(T H)=1, X(T T)=0
$$

- We are also interested in knowing which measurements are more likely and which are less likely
- The distribution function $F: \mathbb{R} \rightarrow[0,1]$ captures this information where

$$
\begin{aligned}
F(x) & =\text { Probability that } X(\omega) \text { is less than or equal to } x \\
& =P(\{\omega \in \Omega: X(\omega) \leq x\})
\end{aligned}
$$

- Is $\{\omega \in \Omega: X(\omega) \leq x\}$ always an event? Does it always belong to the σ-field \mathcal{F} of the experiment?

Random Variables

Definition (Random Variable)

A random variable is a function $X: \Omega \rightarrow \mathbb{R}$ with the property that $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}$ for each $x \in \mathbb{R}$.

Definition (Distribution Function)
The distribution function of a random variable X is the function $F: \mathbb{R} \rightarrow[0,1]$ given by $F(x)=P(X \leq x)$

Examples

- Counting heads in two tosses of a coin.
- Constant random variable

$$
X(w)=c \text { for all } \omega \in \Omega
$$

- Bernoulli random variable

Properties of the Distribution Function

- $\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1$
- If $x<y$, then $F(x) \leq F(y)$
- F is right continuous, $F(x+h) \rightarrow F(x)$ as $h \downarrow 0$

Discrete Random Variables

Definition

A random variable is called discrete if it takes values only in some countable subset $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of \mathbb{R}.

Definition

A discrete random variable X has a probability mass function $f: \mathbb{R} \rightarrow[0,1]$ given by $f(x)=P[X=x]$

Examples

- Counting heads in two tosses of a coin.
- Constant random variable

$$
X(w)=c \text { for all } \omega \in \Omega
$$

- Bernoulli random variable

Continuous Random Variables

Definition

A random variable is called continuous if its distribution function can be expressed as

$$
F(x)=\int_{-\infty}^{x} f(u) d u \text { for all } x \in \mathbb{R}
$$

for some integrable function $f: \mathbb{R} \rightarrow[0, \infty)$ called the probability density function of X.

Example

- Uniform random variable

$$
\Omega=[a, b], X(\omega)=\omega, f(x)=\frac{1}{b-a}
$$

- Gaussian random variable

$$
\Omega=\mathbb{R}, X(\omega)=\omega, f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Random Vectors

Definition

A random vector is a vector of random variables

Definition

The joint distribution function of a random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$ is the function $F_{\mathbf{X}}: \mathbb{R}^{n} \rightarrow[0,1]$ given by $F_{\mathbf{X}}(\mathbf{x})=P(\mathbf{X} \leq \mathbf{x})$

Properties of the Joint Distribution Function

- $\lim _{x \rightarrow-\infty, y \rightarrow-\infty} F_{X, Y}(x, y)=0, \lim _{x \rightarrow \infty, y \rightarrow \infty} F_{X, Y}(x, y)=1$
- If $x_{1} \leq x_{2}, y_{1} \leq y_{2}$, then $F\left(x_{1}, y_{1}\right) \leq F\left(x_{2}, y_{2}\right)$
- F is continuous from above

$$
F_{X, Y}(x+u, y+v) \rightarrow F(x, y) \text { as } u, v \downarrow 0
$$

- $\lim _{y \rightarrow \infty} F_{X, Y}(x, y)=F_{X}(x), \lim _{x \rightarrow \infty} F_{X, Y}(x, y)=F_{Y}(y)$

Questions?

