Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 1, 2013

Measurements in Experiments

In many experiments, we are interested in some real-valued measurement

Example

- A coin is tossed twice. We want to count the number of heads which appear. Ω = {HH, HT, TH, TT} Let X(ω) be the number of heads for ω ∈ Ω. X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0
- We are also interested in knowing which measurements are more likely and which are less likely
- The distribution function $F:\mathbb{R}\to [0,1]$ captures this information where

$$F(x) = Probability that X(\omega) is less than or equal to x$$
$$= P(\{\omega \in \Omega : X(\omega) \le x\})$$

Is {ω ∈ Ω : X(ω) ≤ x} always an event? Does it always belong to the σ-field *F* of the experiment?

Random Variables

Definition (Random Variable)

A random variable is a function $X : \Omega \to \mathbb{R}$ with the property that $\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}$ for each $x \in \mathbb{R}$.

Definition (Distribution Function)

The distribution function of a random variable X is the function $F : \mathbb{R} \to [0, 1]$ given by $F(x) = P(X \le x)$

Examples

- Counting heads in two tosses of a coin.
- Constant random variable

$$X(w) = c$$
 for all $\omega \in \Omega$

Bernoulli random variable

Properties of the Distribution Function

- $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- If x < y, then $F(x) \leq F(y)$
- *F* is right continuous, $F(x + h) \rightarrow F(x)$ as $h \downarrow 0$

Discrete Random Variables

Definition

A random variable is called discrete if it takes values only in some countable subset $\{x_1, x_2, x_3, ...\}$ of \mathbb{R} .

Definition

A discrete random variable X has a probability mass function $f : \mathbb{R} \to [0, 1]$ given by f(x) = P[X = x]

Examples

- Counting heads in two tosses of a coin.
- Constant random variable

$$X(w) = c$$
 for all $\omega \in \Omega$

Bernoulli random variable

Continuous Random Variables

Definition

A random variable is called continuous if its distribution function can be expressed as

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$
 for all $x \in \mathbb{R}$

for some integrable function $f : \mathbb{R} \to [0, \infty)$ called the probability density function of *X*.

Example

- Uniform random variable $\Omega = [a, b], X(\omega) = \omega, f(x) = \frac{1}{b-a}$
- Gaussian random variable

$$\Omega = \mathbb{R}, X(\omega) = \omega, f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Random Vectors

Definition

A random vector is a vector of random variables

Definition

The joint distribution function of a random vector $\mathbf{X} = (X_1, \dots, X_n)$ is the function $F_{\mathbf{X}} : \mathbb{R}^n \to [0, 1]$ given by $F_{\mathbf{X}}(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x})$

Properties of the Joint Distribution Function

•
$$\lim_{x\to-\infty, y\to-\infty} F_{X,Y}(x,y) = 0$$
, $\lim_{x\to\infty, y\to\infty} F_{X,Y}(x,y) = 1$

- If $x_1 \le x_2, y_1 \le y_2$, then $F(x_1, y_1) \le F(x_2, y_2)$
- F is continuous from above

$$F_{X,Y}(x+u,y+v) \rightarrow F(x,y)$$
 as $u, v \downarrow 0$

•
$$\lim_{y\to\infty} F_{X,Y}(x,y) = F_X(x), \lim_{x\to\infty} F_{X,Y}(x,y) = F_Y(y)$$

Questions?