Sampling Models

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering
Indian Institute of Technology Bombay
January 30, 2013

Equally Likely Outcomes in a Finite Sample Space

- Many interesting experiments have a finite sample space and equally likely outcomes
- The σ-field in this case is the power set of the sample space
- The probability of an event is the ratio of the cardinalities of the event and the sample space

$$
P(A)=\frac{|A|}{|\Omega|}
$$

for $A \subseteq \Omega$

- In this situation, to find the probability of an event A we need to find its cardinality i.e. count the number of elements in it

Fundamental Rule

A number of multiple choices are to be made. There are m_{1} possibilities for the first choice, m_{2} for the second, m_{3} for the third and so on. If these choices can be combined freely, then the total number of possibilities for the whole set of choices is equal to

$$
m_{1} \times m_{2} \times m_{3} \times \cdots
$$

Examples

- A man has three shirts and two ties. How many ways can he dress up?
- A man always eats a 4 -course dinner consisting of a beverage, starter, main course and dessert. If a restaurant serves 4 beverages, 2 soups, 3 main courses and 4 desserts, how many possible different dinners can he have?
- In how many ways can five dice appear when they are rolled?
- In how many ways can five dice show different faces when they are rolled?

Sampling Models

- An urn contains m distinguishable balls numbered 1 to m
- n balls will be drawn under various specified conditions
- Number of all possible outcomes will be counted in each case

Sampling with Replacement and with Ordering

- The n balls are drawn sequentially, each drawn ball being put back into the urn before the next drawing
- The numbers on the balls are recorded in the order of their appearance
- One outcome of this experiment can be described by an n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each a_{i} can be any integer from 1 to m
- By the fundamental rule, the total number of outcomes is

$$
\underbrace{m \times m \times \cdots \times m}_{n \text { times }}=m^{n}
$$

Sampling without Replacement and with Ordering

- The n balls are drawn sequentially, each drawn ball is left out of the urn for the next drawing
- The numbers on the balls are recorded in the order of their appearance
- One outcome of this experiment can be described by an n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where the a_{i} 's are all different integers between 1 and m
- By the fundamental rule, the total number of outcomes is

$$
m \cdot(m-1) \cdot(m-2) \cdots(m-n+1)
$$

Permutations of m Distinguishable Balls

- This is equivalent to sampling all the balls in the urn without replacement and with ordering
- By the fundamental rule, the total number of outcomes is

$$
m!=m \cdot(m-1) \cdot(m-2) \cdots 2 \cdot 1
$$

Sampling without Replacement and without Ordering

- The n balls are drawn sequentially, each drawn ball is left out of the urn for the next drawing
- The order of appearance of the balls is not recorded. This is equivalent to grabbing n balls in one go.
- One outcome of this experiment can be described by a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where the a_{i} 's are all different integers between 1 and m
- Let x be the total number of outcomes
- By permuting each group of n balls, we can get any n-tuple which contains these n balls
- Thus $x \cdot n!=m \cdot(m-1) \cdot(m-2) \cdots(m-n+1)$
- The total number of outcomes is

$$
x=\frac{m \cdot(m-1) \cdot(m-2) \cdots(m-n+1)}{n!}=\frac{m!}{n!(m-n)!}=\binom{m}{n}
$$

- The number $\binom{m}{n}$ is called a binomial coefficient

Permutations of m Balls Distinguishable by Groups

- Suppose there are m_{1} balls of color $1, m_{2}$ balls of color $2, \ldots, m_{r}$ balls of color r such that

$$
m_{1}+m_{2}+\cdots+m_{r}=m
$$

- The colors are distinguishable but the balls of the same color are not distinguishable
- How many distinguishable arrangements of these m balls are possible?
- Let x be the total number of arrangements
- Then

$$
x \cdot m_{1}!m_{2}!\cdots m_{r}!=m!\Rightarrow x=\frac{m!}{m_{1}!m_{2}!\cdots m_{r}!}
$$

- The number x is called a multinomial coefficient

Sampling with Replacement and without Ordering

- The n balls are drawn sequentially, each drawn ball being put back into the urn before the next drawing
- The order of appearance of the balls is not recorded
- One outcome of this experiment can be described by an m-tuple $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ where each a_{i} can be any integer from 0 to n and $\sum_{i=1}^{m} a_{i}=n$
- The total number of outcomes is

$$
\binom{m+n-1}{n}
$$

Partition of m Balls into r Groups

- Suppose we want to divide m distinguishable balls into r groups; m_{1} in the first group, m_{2} in the second group, ... , m_{r} in the r th group

$$
m_{1}+m_{2}+\cdots+m_{r}=m
$$

- The ordering within a group does not matter
- The number of ways of choosing m_{1} balls from m balls ignoring order is

$$
\binom{m}{m_{1}}
$$

- The number of ways of choosing m_{2} balls from $m-m_{1}$ balls ignoring order is

$$
\binom{m-m_{1}}{m_{2}}
$$

- By the fundamental rule, the total number of outcomes is

$$
\binom{m}{m_{1}} \cdot\binom{m-m_{1}}{m_{2}} \cdots\binom{m-m_{1}-m_{2}-\cdots-m_{r-1}}{m_{r}}=\frac{m!}{m_{1}!m_{2}!\cdots m_{r}!}
$$

Examples

- A deck of 52 cards is shuffled. What is the probability that the four aces are found in a row?
- Six dice are rolled. What is the probability of getting three pairs?
- What is the probability that among n people there are at least two who have the same birthday? Ignore leap years.

Reference

- Chapter 3, Elementary Probability Theory, K. L. Chung and F. AitSahlia, 2002 (4th Edition)

Questions?

