Why is the Probability Space a Triple?

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 11, 2013

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω , a σ -field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}) .

- When Ω is finite, $\mathcal{F} = 2^{\Omega}$
- If this always holds, then Ω uniquely specifies ${\cal F}$
- Then the probability space would be an ordered pair (Ω, P)
- For uncountable Ω , it may be impossible to define P if $\mathcal{F} = 2^{\Omega}$
- We will see an example but first we need the following definitions
 - Countable and uncountable sets
 - Equivalence relations

Countable and Uncountable Sets

Functions

Definition (One-to-one function)

A function $f : A \to B$ is said to be a one-to-one mapping of A into B if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ and $x_1, x_2 \in A$.

Definition (Onto function)

A function $f : A \rightarrow B$ is said to be mapping A onto B if f(A) = B.

Definition (One-to-one correspondence)

A function $f : A \rightarrow B$ is said to be a one-to-one correspondence if it is a one-to-one and onto mapping from A to B.

Definition

Sets *A* and *B* are said to have the same cardinal number if there exists a one-to-one correspondence $f : A \rightarrow B$.

Countable Sets

Definition (Countable Sets)

A set A is said to be countable if there exists a one-to-one correspondence between A and \mathbb{N} .

Examples

- N is countable
- Z is countable
- $\mathbb{N} \times \mathbb{N}$ is countable
- $\mathbb{Z} \times \mathbb{N}$ is countable
- Q is countable

Uncountable Sets

Definition (Uncountable Sets)

A set is said to be uncountable if it is neither finite nor countable.

Examples

- [0, 1] is uncountable

Equivalence Relations

Binary Relations

Definition (Binary Relation)

Given a set X, a binary relation R is a subset of $X \times X$.

Examples

If $(a, b) \in R$, we write $a \sim_R b$ or just $a \sim b$.

Equivalence Relations

Definition (Equivalence Relation)

A binary relation *R* on a set *X* is said to be an equivalence relation on *X* if for all $a, b, c \in X$ the following conditions hold

Reflexive $a \sim a$ Symmetric $a \sim b$ implies $b \sim a$ Transitive $a \sim b$ and $b \sim c$ imply $a \sim c$

Examples

•
$$X = \{1, 2, 3, 4\}, R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$$

• $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | a - b \text{ is an even integer} \}$
• $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} | a - b \text{ is a multiple of 5} \}$

Equivalence Classes

Definition (Equivalence Class)

Given an equivalence relation *R* on *X* and an element $x \in X$, the equivalence class of *x* is the set of all $y \in X$ such that $x \sim y$.

Examples

•
$$X = \{1, 2, 3, 4\}, R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$$

Equivalence class of 1 is $\{1\}$.

•
$$R = \left\{ (a,b) \in \mathbb{Z} \times \mathbb{Z} \middle| a - b \text{ is an even integer} \right\}$$

Equivalence class of 0 is the set of all even integers. Equivalence class of 1 is the set of all odd integers.

•
$$R = \left\{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \middle| a - b \text{ is a multiple of 5} \right\}$$
. Equivalence classes?

Theorem

Given an equivalence relation, the collection of equivalence classes form a partition of *X*.

A Non-Measurable Set

Choosing a Random Point in the Unit Interval

- Let Ω = [0, 1]
- For $0 \le a \le b \le 1$, we want

$$P([a,b]) = P((a,b]) = P([a,b)) = P((a,b)) = b - a$$

• We want P to be unaffected by shifting (with wrap-around)

$$P([0,0.5]) = P([0.25,0.75]) = P([0.75,1] \cup [0,0.25])$$

• In general, for each subset $A \subseteq [0, 1]$ and $0 \le r \le 1$

$$P(A \oplus r) = P(A)$$

where

$$A \oplus r = \{a + r | a \in A, a + r \le 1\} \cup \{a + r - 1 | a \in A, a + r > 1\}$$

We want P to be countably additive

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

for disjoint subsets A_1, A_2, \ldots of [0, 1]

Can the definition of P be extended to all subsets of [0, 1]?

Building the Contradiction

- Suppose *P* is defined for all subsets of [0, 1]
- Define an equivalence relation on [0, 1] given by

 $x \sim y \iff x - y$ is rational

- This relation partitions [0, 1] into disjoint equivalence classes
- Let *H* be a subset of [0, 1] consisting of exactly one element from each equivalence class. Let 0 ∈ *H*; then 1 ∉ *H*.
- [0, 1) is contained in the union $\bigcup_{r \in [0,1) \cap \mathbb{Q}} (H \oplus r)$
- Since the sets $H \oplus r$ for $r \in [0, 1) \cap \mathbb{Q}$ are disjoint, by countable additivity

$$P([0,1)) = \sum_{r \in [0,1) \cap \mathbb{Q}} P(H \oplus r)$$

• Shift invariance implies $P(H \oplus r) = P(H)$ which implies

$$1 = P([0,1)) = \sum_{r \in [0,1) \cap \mathbb{Q}} P(H)$$

which is a contradiction

Consequences of the Contradiction

- *P* cannot be defined on all subsets of [0, 1]
- But the subsets it is defined on have to form a σ -field
- The *σ*-field of subsets of [0, 1] on which *P* can be defined without contradiction are called the measurable subsets
- That is why probability spaces are triples

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω , a σ -field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}) .

Questions?