Assignment 3: 20 points

- 1. [5 points] Suppose observations Y_i , i = 1, 2, ..., N are Poisson distributed with parameter λ . Assume that the Y_i 's are independent.
 - (a) Derive the ML estimator for λ .
 - (b) Find the mean and variance of the ML estimate.
- 2. [5 points] Suppose we observe a sequence of random variables Y_1, Y_2, \ldots, Y_n given by

$$Y_k = \theta s_k + N_k, \quad k = 1, 2, \dots, n$$

where the N_k 's are independent zero-mean Gaussian random variables with variance σ^2 . The sequence s_1, \ldots, s_n is a known signal sequence and θ is an unknown parameter.

- (a) Find the maximum likelihood estimate $\hat{\theta}_{ML}(\mathbf{Y})$ of the parameter θ .
- (b) Find the mean and variance of $\hat{\theta}_{ML}(\mathbf{Y})$.
- 3. [5 points] Specify a method to generate a random variable with Rayleigh distribution which is a continuous random variable with probability distribution function given by

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - e^{-\frac{x^2}{2\sigma^2}} & \text{otherwise} \end{cases}$$

where σ is a known parameter.

4. [5 points] Let F and G be the distribution functions of random variables X and Y respectively. Generate a random variable whose distribution function is $\alpha F + (1-\alpha)G$ for a fixed α such that $0 \le \alpha \le 1$?