Practice Problem Set 1

- 1. Consider the collection $\mathcal{F} = \{A \subset \mathbb{N} | A \text{ is a finite set} \}$. Which of the following statements are true?
 - (a) If $A, B \in \mathcal{F}$, then $A \bigcup B \in \mathcal{F}$.
 - (b) If $A_1, A_2, A_3, \dots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.
 - (c) \mathcal{F} is a σ -field.
- 2. Repeat the previous question with $\mathcal{F} = \{A \subset \mathbb{N} | \text{Either } A \text{ or } A^c \text{ is finite} \}.$
- 3. Suppose $\Omega = \{1, 2, 3\}$ and $\mathcal{F} = 2^{\Omega}$. Find necessary and sufficient conditions on real numbers x, y, z such that there exists a countably additive probability measure P satisfying $x = P(\{1, 2\}), y = P(\{2, 3\})$ and $z = P(\{1, 3\})$.
- 4. Let $\mathcal{B} = \{b_1 b_2 b_3 \cdots | b_i = 0 \text{ or } 1 \text{ for } i \in \mathbb{N}\}$ be the set of all infinite binary strings. Show that \mathcal{B} is uncountable.
- 5. Determine if each of the following binary relations on \mathbb{Z} are equivalence relations. If yes, determine the equivalence class of the integer 1.
 - (a) $x \sim y \iff |y x| \le 5$
 - (b) $x \sim y \iff |y| \le 5$ and $|x| \le 5$
 - (c) $x \sim y \iff |x| \ge |y|$
- 6. Let $\Omega = [0,1]$ and $\mathcal{F} = 2^{\Omega}$. Consider $P : \mathcal{F} \to [0,1]$ such that $P(\phi) = 0$, $P(\Omega) = 1$ and P(A) = 0 for every nonempty proper subset A of Ω . Is P a valid probability measure? If yes, it is defined for all subsets of Ω . Why is this not a contradiction?