1. Consider the collection $\mathcal{F}=\{A \subset \mathbb{N} \mid A$ is a finite set $\}$. Which of the following statements are true?
(a) If $A, B \in \mathcal{F}$, then $A \bigcup B \in \mathcal{F}$.
(b) If $A_{1}, A_{2}, A_{3}, \cdots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
(c) \mathcal{F} is a σ-field.
2. Repeat the previous question with $\mathcal{F}=\left\{A \subset \mathbb{N} \mid\right.$ Either A or A^{c} is finite $\}$.
3. Suppose $\Omega=\{1,2,3\}$ and $\mathcal{F}=2^{\Omega}$. Find necessary and sufficient conditions on real numbers x, y, z such that there exists a countably additive probability measure P satisying $x=P(\{1,2\}), y=P(\{2,3\})$ and $z=P(\{1,3\})$.
4. Let $\mathcal{B}=\left\{b_{1} b_{2} b_{3} \cdots \mid b_{i}=0\right.$ or 1 for $\left.i \in \mathbb{N}\right\}$ be the set of all infinite binary strings. Show that \mathcal{B} is uncountable.
5. Determine if each of the following binary relations on \mathbb{Z} are equivalence relations. If yes, determine the equivalence class of the integer 1.
(a) $x \sim y \Longleftrightarrow|y-x| \leq 5$
(b) $x \sim y \Longleftrightarrow|y| \leq 5$ and $|x| \leq 5$
(c) $x \sim y \Longleftrightarrow|x| \geq|y|$
6. Let $\Omega=[0,1]$ and $\mathcal{F}=2^{\Omega}$. Consider $P: \mathcal{F} \rightarrow[0,1]$ such that $P(\phi)=0, P(\Omega)=1$ and $P(A)=0$ for every nonempty proper subset A of Ω. Is P a valid probability measure? If yes, it is defined for all subsets of Ω. Why is this not a contradiction?
