EE 325: Probability and Random Processes (Spring 2014)
Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay

1. Consider a probability space (Ω, \mathcal{F}, P). For any $A, B \in \mathcal{F}$, show that $P\left(B \cap A^{c}\right)=$ $P(B)-P(A \cap B)$. Use this result to deduce the following.

- $P\left(A^{c}\right)=1-P(A)$
- If $A \subseteq B$, then $P(A) \leq P(B)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

2. For events A and B, find formulas for the probabilities of the following events in terms of $P(A), P(B)$, and $P(A \cap B)$.

- either A or B or both occur
- either A or B but not both occur
- at least one of A or B occur
- at most one of A or B occur

3. If $P(A)=\frac{1}{3}$ and $P\left(B^{c}\right)=\frac{1}{4}$, can A and B be disjoint?
4. Use induction to prove that

$$
\begin{aligned}
P\left(\bigcap_{i=1}^{n} A_{i}\right)= & \sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cup A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cup A_{j} \cup A_{k}\right)- \\
& \cdots+(-1)^{n+1} P\left(A_{1} \cup A_{2} \cup \cdots A_{n}\right)
\end{aligned}
$$

5. Prove the following:

- If $P(B)=1$, then $P(A \mid B)=P(A)$ for any A.
- If $A \subset B$, then $P(B \mid A)=1$ and $P(A \mid B)=\frac{P(A)}{P(B)}$.
- If A and B are mutually exclusive, then $P(A \mid A \cup B)=\frac{P(A)}{P(A)+P(B)}$.
- $P(A \cap B \cap C)=P(A \mid B \cap C) P(B \mid C) P(C)$.

6. Prove that if $P(A)>0$ and $P(B)>0$, then:

- If A and B are mutually exclusive, they cannot be independent.
- If A and B are independent, they cannot be mutually exclusive.

