1. (2 points) Consider the binary input ternary output channel below. The inputs are either 0 or 1 . The prior probability of the input being 0 is 0.4 . The output is one of three symbols A, B, C.
(a) Find the decision rule $\delta_{M P E}$ which minimizes the decision error probability.
(b) Find the decision error probability when $\delta_{M P E}$ is used.

2. (4 points) Consider the following binary hypothesis testing problem where the hypotheses are equally likely.

$$
\begin{aligned}
& H_{0} \quad: \quad Y \sim U\left[-\sqrt{\frac{e^{2} \pi}{2}}, \sqrt{\frac{e^{2} \pi}{2}}\right] \\
& H_{1} \quad: \quad Y \sim \mathcal{N}(0,1)
\end{aligned}
$$

U denotes the uniform distribution, \mathcal{N} denotes the Gaussian distribution and e is the base of the natural logarithm.
(a) Find the decision error probability of the rule which decides H_{1} is true if $|Y|>\sqrt{\frac{e^{2} \pi}{2}}$ and decides H_{0} is true if $|Y| \leq \sqrt{\frac{e^{2} \pi}{2}}$. Express your answer in terms of the Q function.
(b) Find the decision error probability of the optimal decision rule. Express your answer in terms of the Q function.
3. (2 points) Suppose observations $Y_{i}, i=1,2, \ldots, N$ are Poisson distributed with parameter λ. Assume that the Y_{i} 's are independent.
(a) Derive the ML estimator for λ.
(b) Find the mean and variance of the ML estimate.
4. (2 points) Suppose we observe $Y_{i}, i=1,2, \ldots, M$ such that

$$
Y_{i} \sim U[-\theta, \theta]
$$

where Y_{i} 's are independent and θ is unknown. Assume $\theta>0$. Derive the ML estimator of θ.
5. (2 points) Suppose observations X_{i} and $Y_{i}(i=1, \ldots, N)$ depend on an unknown parameter A as per the following distributions.

$$
\begin{aligned}
X_{i} \sim \mathcal{N}\left(A, \sigma^{2}\right), & i=1,2, \ldots, N \\
Y_{i} \sim \mathcal{N}\left(A, 2 \sigma^{2}\right), & i=1,2, \ldots, N
\end{aligned}
$$

Note that the variance of Y_{i} is twice the variance of X_{i}. Assume that X_{i} and X_{j} are independent for $i \neq j$. Assume that Y_{i} and Y_{j} are independent for $i \neq j$. Assume that X_{i} and Y_{j} are independent for all i, j. Assume σ^{2} is known.
(a) Derive the ML estimator for A.
(b) Find the mean and variance of the ML estimate.
6. (2 points) Specify a method to generate a random variable with Rayleigh distribution which is a continuous random variable with probability distribution function given by

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
1-e^{-\frac{x^{2}}{2 \sigma^{2}}} & \text { otherwise }
\end{array}\right.
$$

where σ is a known parameter.
7. (2 points) Suppose a fair coin is repeatedly tossed. Specify a method to generate a random variable which corresponds to the number of tosses until a heads appears. Prove that the generated random variable has the correct distribution.

Useful Formulas

- Gaussian vector density $p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\mathbf{C})}} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)$ where $\mathbf{m}=E[\mathbf{X}], \mathbf{C}=$ $E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{T}\right]$
- Minimum probability of error rule

$$
\delta_{\mathrm{MPE}}(\mathbf{y})=\arg \max _{1 \leq i \leq M} \pi_{i} p_{i}(\mathbf{y})
$$

- The MAP decision rule is given by

$$
\delta_{\mathrm{MAP}}(\mathbf{y})=\arg \max _{1 \leq i \leq M} P\left[H_{i} \text { is true } \mid \mathbf{y}\right]
$$

- The ML decision rule is given by

$$
\delta_{\mathrm{ML}}(\mathbf{y})=\arg \max _{1 \leq i \leq M} p_{i}(\mathbf{y})
$$

