1. (2 points) Suppose X and Y are independent random variables with characteristic functions

$$
\begin{aligned}
\phi_{X}(t) & =\exp \left(i 5 t-5 t^{2}\right) \\
\phi_{Y}(t) & =\exp \left(i 6 t-4 t^{2}\right)
\end{aligned}
$$

respectively. Find the characteristic function of $3 X+4 Y+5$.
2. (4 points) Suppose we have n letters with n matching envelopes i.e. a letter has exactly one matching envelope. A secretary randomly puts the n letters into the envelopes. Let p_{n} be the probability that none of the letters are placed in their matching envelope.
(a) Write down a recurrence relation for p_{n} in terms of p_{n-1} and p_{n-2} for $n \geq 3$. (Hint: Condition on the first letter going envelope i and the ith letter going to either the first envelope or some other envelope).
(b) Let $G(s)=\sum_{n=1}^{\infty} p_{n} s^{n}$. Using the above recurrence relation, obtain a differential equation involving $G(s)$.
(c) Calculate p_{1} and p_{2} by direct reasoning. Using these values for p_{1} and p_{2}, solve the differential equation for $G(s)$ and get p_{n}.
3. (2 points) A fair coin is tossed repeatedly and a random process X_{n} for $n=1,2,3, \ldots$ is generated according to the following rule.

$$
X_{n}= \begin{cases}2^{n} & \text { if the first } n \text { tosses all result in heads } \\ 0 & \text { if any one of the first } n \text { tosses results in tails }\end{cases}
$$

(a) Prove or disprove almost sure convergence of X_{n}.
(b) Prove or disprove convergence in probability of X_{n}.
(c) Prove or disprove convergence in distribution of X_{n}.
(d) Prove or disprove convergence in mean of X_{n}.
4. (2 points) Consider the following experiment. A fair coin is tossed. If it shows heads, the outcome ω of the experiment is zero. If it shows tails, a uniform random variable from the interval $[-1,1]$ is generated and the outcome ω is equal to this random variable. Let $X_{n}(\omega)=1+\omega^{n}$ for $n=1,2,3, \ldots$.
(a) Prove or disprove almost sure convergence of X_{n}.
(b) Prove or disprove convergence in probability of X_{n}.
(c) Prove or disprove convergence in distribution of X_{n}.
(d) Prove or disprove convergence in mean of X_{n}.
5. (4 points) A fair die with faces $\{1,2, \ldots, 6\}$ is rolled 500 times. Using the central limit theorem, estimate the probability that the sum of the 500 rolls will be at least 1800 .
6. (2 points) Let $X(t)$ be a zero-mean wide sense stationary random process with autocorrelation function $R_{X}(\tau)$. Let $Y(t)=t+X(t)$. Find the mean function and autocorrelation function of $Y(t)$ in terms of $R_{X}(\tau)$. Prove or disprove the wide sense stationarity of $Y(t)$.

