Convergence of Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 19, 2014

Motivation

Theorem (Weak Law of Large Numbers)

Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables with finite means μ . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\frac{S_n}{n} \xrightarrow{P} \mu$$
 as $n \to \infty$.

Theorem (Central Limit Theorem)

Let X_1, X_2, \ldots be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^2 . Their partial sums $S_n = X_1 + X_2 + \cdots + X_n$ satisfy

$$\sqrt{n}\left(\frac{S_n}{n}-\mu\right) \xrightarrow{D} \mathcal{N}(0,\sigma^2) \quad \text{as } n \to \infty.$$

Modes of Convergence

- A sequence of real numbers $\{x_n : n = 1, 2, ...\}$ is said to converge to a limit x if for all $\varepsilon > 0$ there exists an $m_{\varepsilon} \in \mathbb{N}$ such that $|x_n x| < \varepsilon$ for all $n \ge m_{\varepsilon}$.
- We want to define convergence of random variables but they are functions from Ω to $\mathbb R$
- The solution
 - Derive real number sequences from sequences of random variables
 - Define convergence of the latter in terms of the former
- Four ways of defining convergence for random variables
 - Convergence almost surely
 - Convergence in rth mean
 - Convergence in probability
 - Convergence in distribution

Convergence Almost Surely

- Let X, X_1, X_2, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- For each $\omega \in \Omega$, $X(\omega)$ and $X_n(\omega)$ are reals
- $X_n \to X$ almost surely if $\{\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}$ is an event whose probability is 1
- " $X_n \to X$ almost surely" is abbreviated as $X_n \xrightarrow{\text{a.s.}} X$

Example

- Let $\Omega = [0, 1]$ and P be the uniform distribution on Ω
- $P(\omega \in [a, b]) = b a$ for $0 \le a \le b \le 1$
- Let X_n be defined as

$$X_n(\omega) = \begin{cases} n, & \omega \in \left[0, \frac{1}{n}\right) \\ 0, & \omega \in \left[\frac{1}{n}, 1\right] \end{cases}$$

- Let $X(\omega) = 0$ for all $\omega \in [0, 1]$
- $X_n \xrightarrow{\text{a.s.}} X$

Convergence in rth Mean

- Let X, X_1, X_2, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- Suppose $E[|X^r|] < \infty$ and $E[|X_n^r|] < \infty$ for all n
- $X_n \to X$ in rth mean if

$$E(|X_n - X|^r) \to 0 \text{ as } n \to \infty$$

where r > 1

- " $X_n \to X$ in rth mean" is abbreviated as $X_n \xrightarrow{r} X$
- For r = 1, $X_n \xrightarrow{1} X$ is written as " $X_n \to X$ in mean"
- For r = 2, $X_n \xrightarrow{2} X$ is written as " $X_n \to X$ in mean square" or $X_n \xrightarrow{\text{m.s.}} X$

Example

- Let $\Omega = [0, 1]$ and P be the uniform distribution on Ω
- Let X_n be defined as

$$X_n(\omega) = \begin{cases} n, & \omega \in [0, \frac{1}{n}) \\ 0, & \omega \in [\frac{1}{n}, 1] \end{cases}$$

- Let $X(\omega) = 0$ for all $\omega \in [0, 1]$
- $E[|X_n|] = 1$ and so X_n does not converge in mean to X

Convergence in Probability

- Let X, X_1, X_2, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- $X_n \to X$ in probability if

$$P(|X_n - X| > \epsilon) \to 0$$
 as $n \to \infty$ for all $\epsilon > 0$

• " $X_n \to X$ in probability" is abbreviated as $X_n \xrightarrow{P} X$

Example

- Let $\Omega = [0, 1]$ and P be the uniform distribution on Ω
- Let X_n be defined as

$$X_n(\omega) = \begin{cases} n, & \omega \in \left[0, \frac{1}{n}\right) \\ 0, & \omega \in \left[\frac{1}{n}, 1\right] \end{cases}$$

- Let $X(\omega) = 0$ for all $\omega \in [0, 1]$
- For $\varepsilon > 0$, $P[|X_n X| > \varepsilon] = P[|X_n| > \varepsilon] \le P[X_n = n] = \frac{1}{n} \to 0$
- $X_n \xrightarrow{P} X$

Convergence in Distribution

- Let X, X_1, X_2, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- $X_n \to X$ in distribution if

$$P(X_n \le x) \to P(X \le x)$$
 as $n \to \infty$

for all points x where $F_X(x) = P(X \le x)$ is continuous

- " $X_n \to X$ in distribution" is abbreviated as $X_n \xrightarrow{D} X$
- · Convergence in distribution is also termed weak convergence

Example

Let X be a Bernoulli RV taking values 0 and 1 with equal probability $\frac{1}{2}$. Let X_1, X_2, X_3, \ldots be identical random variables given by $X_n = X$ for all n. The X_n 's are not independent but $X_n \stackrel{D}{\longrightarrow} X$.

Let Y = 1 - X. Then $X_n \xrightarrow{D} Y$.

But $|X_n - Y| = 1$ and the X_n 's do not converge to Y in any other mode.

Relations between Modes of Convergence

Theorem

$$(X_n \xrightarrow{a.s.} X)$$

$$(X_n \xrightarrow{P} X) \Rightarrow (X_n \xrightarrow{D} X)$$

$$(X_n \xrightarrow{r} X)$$

for any $r \geq 1$.

Convergence in Probability Implies Convergence in Distribution

- Suppose $X_n \xrightarrow{P} X$
- Let $F_n(x) = P(X_n \le x)$ and $F(x) = P(X \le x)$
- If ε > 0.

$$F_{n}(x) = P(X_{n} \leq x)$$

$$= P(X_{n} \leq x, X \leq x + \varepsilon) + P(X_{n} \leq x, X > x + \varepsilon)$$

$$\leq F(x + \varepsilon) + P(|X_{n} - X| > \varepsilon)$$

$$F(x - \varepsilon) = P(X \leq x - \varepsilon)$$

$$= P(X \leq x - \varepsilon, X_{n} \leq x) + P(X \leq x - \varepsilon, X_{n} > x)$$

$$\leq F_{n}(x) + P(|X_{n} - X| > \varepsilon)$$

Combining the above inequalities we have

$$F(x-\varepsilon)-P(|X_n-X|>\varepsilon)\leq F_n(x)\leq F(x+\varepsilon)+P(|X_n-X|>\varepsilon)$$

- If F is continuous at x, $F(x \varepsilon) \to F(x)$ and $F(x + \varepsilon) \to F(x)$ as $\varepsilon \downarrow 0$
- Since $X_n \xrightarrow{P} X$, $P(|X_n X| > \varepsilon) \to 0$ as $n \to \infty$

Convergence in *r*th Mean Implies Convergence in Probability

- If $r > s \ge 1$ and $X_n \xrightarrow{r} X$ then $X_n \xrightarrow{s} X$
 - Lyapunov's inequality: If r > s > 0, then $(E[|Y|^s])^{\frac{1}{s}} \leq (E[|Y|^r])^{\frac{1}{r}}$
 - If $X_n \stackrel{r}{\to} X$, then $E[|X_n X|^r] \to 0$ and $(E[|X_n X|^s])^{\frac{1}{s}} \le (E[|X_n X|^r])^{\frac{1}{r}}$
- If $X_n \xrightarrow{1} X$ then $X_n \xrightarrow{P} X$
- By Markov's inequality, we have

$$P(|X_n - X| > \varepsilon) \le \frac{E(|X_n - X|)}{\varepsilon}$$

for all $\varepsilon > 0$

Convergence Almost Surely Implies Convergence in Probability

- Let $A_n(\varepsilon) = \{|X_n X| > \varepsilon\}$ and $B_m(\varepsilon) = \bigcup_{n > m} A_n(\varepsilon)$
- $X_n \xrightarrow{\text{a.s.}} X$ if and only if $P(B_m(\varepsilon)) \to 0$ as $m \to \infty$, for all $\varepsilon > 0$
 - Let

$$C = \{\omega \in \Omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}$$

$$A(\varepsilon) = \{\omega \in \Omega : \omega \in A_n(\varepsilon) \text{ for infinitely many values of } n\}$$

$$= \bigcap_{m} \bigcup_{n=m}^{\infty} A_n(\varepsilon)$$

- $X_n(\omega) \to X(\omega)$ if and only if $\omega \notin A(\varepsilon)$ for all $\varepsilon > 0$
- P(C) = 1 if and only if $P(A(\varepsilon)) = 0$ for all $\varepsilon > 0$
- $B_m(\varepsilon)$ is a decreasing sequence of events with limit $A(\varepsilon)$
- $P(A(\varepsilon)) = 0$ if and only if $P(B_m(\varepsilon)) \to 0$ as $m \to \infty$
- Since $A_n(\varepsilon) \subseteq B_n(\varepsilon)$, we have $P(|X_n X| > \varepsilon) = P(A_n(\varepsilon)) \to 0$ whenever $P(B_n(\varepsilon)) \to 0$
- Thus $X_n \xrightarrow{\text{a.s.}} X \implies X_n \xrightarrow{P} X$

Some Converses

• If $X_n \xrightarrow{D} c$, where c is a constant, then $X_n \xrightarrow{P} c$

$$P(|X_n - c| > \varepsilon) = P(X_n < c - \varepsilon) + P(X_n > c + \varepsilon) \to 0 \text{ if } X_n \xrightarrow{D} c$$

- If $P_n(\varepsilon) = P(|X_n X| > \varepsilon)$ satisfies $\sum_n P_n(\varepsilon) < \infty$ for all $\varepsilon > 0$, then $X_n \xrightarrow{\text{a.s.}} X$
 - Let $A_n(\varepsilon) = \{|X_n X| > \varepsilon\}$ and $B_m(\varepsilon) = \bigcup_{n > m} A_n(\varepsilon)$

$$P(B_m(\varepsilon)) \le \sum_{n=m}^{\infty} P(A_n(\varepsilon)) = \sum_{n=m}^{\infty} P_n(\varepsilon) \to 0 \text{ as } m \to \infty$$

• $X_n \xrightarrow{\text{a.s.}} X$ if and only $P(B_m(\varepsilon)) \to 0$ as $m \to \infty$, for all $\varepsilon > 0$

Borel-Cantelli Lemmas

- Let A_1, A_2, \ldots be an infinite sequence of events from (Ω, \mathcal{F}, P)
- Consider the event that infinitely many of the An occur

$$A = \{A_n \text{ i.o.}\} = \bigcap_{n} \bigcup_{m=n}^{\infty} A_m$$

Theorem

Let A be the event that infinitely many of the A_n occur. Then

- P(A) = 0 if $\sum_n P(A_n) < \infty$,
- P(A) = 1 if $\sum_{n} P(A_n) = \infty$ and A_1, A_2, A_3, \dots are independent events

Proof of first lemma.

We have $A \subseteq \bigcup_{m=n}^{\infty} A_m$ for all n

$$P(A) \leq \sum_{m=n}^{\infty} P(A_m) \to 0 \text{ as } n \to 0$$

Proof of Second Borel-Cantelli Lemma

$$A^c = \bigcup_n \bigcap_{m=n}^\infty A_m^c$$

$$P\left(\bigcap_{m=n}^{\infty} A_{m}^{c}\right) = \lim_{r \to \infty} P\left(\bigcap_{m=n}^{r} A_{m}^{c}\right) = \lim_{r \to \infty} \prod_{m=n}^{r} [1 - P(A_{m})] = \prod_{m=n}^{\infty} [1 - P(A_{m})]$$

$$\leq \prod_{m=n}^{\infty} \exp\left[-P(A_{m})\right] = \exp\left(-\sum_{m=n}^{\infty} P(A_{m})\right) = 0$$

Thus

$$P(A^c) = \lim_{n \to \infty} P\left(\bigcap_{m=n}^{\infty} A_m^c\right) = 0$$

Reference

• Chapter 7, *Probability and Random Processes*, Grimmett and Stirzaker, Third Edition, 2001.