Expectation of Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 12, 2014

Expectation of Discrete Random Variables

Definition

The expectation of a discrete random variable X with probability mass function f is defined to be

$$E(X) = \sum_{x:f(x)>0} xf(x)$$

whenever this sum is absolutely convergent. The expectation is also called the mean value or the expected value of the random variable.

Example

 $\Omega =$

• Bernoulli random variable

{0,1}
$$f(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

where $0 \le p \le 1$

$$E(X) = 1 \cdot p + 0 \cdot (1 - p) = p$$

More Examples

• The probability mass function of a binomial random variable *X* with parameters *n* and *p* is

$$P[X = k] = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{if } 0 \le k \le n$$

Its expected value is given by

$$E(X) = \sum_{k=0}^{n} k P[X = k] = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

• The probability mass function of a Poisson random variable with parameter λ is given by

$$P[X=k] = \frac{\lambda^k}{k!}e^{-\lambda} \quad k = 0, 1, 2, \dots$$

Its expected value is given by

$$E(X) = \sum_{k=0}^{\infty} k P[X = k] = \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda$$

Why do we need absolute convergence?

- A discrete random variable can take a countable number of variables
- The definition of expectation involves a weighted sum of these values
- The order of the terms in the infinite sum is not specified in the definition
- The order of the terms can affect the value of the infinite sum
- Consider the following series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

Its sums to a value less than $\frac{5}{6}$

 Consider a rearrangement of the above series where two positive terms are followed by one negative term

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} + \cdots$$

Since

$$\frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} > 0$$

the rearranged series sums to a value greater than $\frac{5}{6}$

Why do we need absolute convergence?

- A series ∑ a_i is said to converge absolutely if the series ∑ |a_i| converges
- Theorem: If ∑ a_i is a series which converges absolutely, then every rearrangement of ∑ a_i converges, and they all converge to the same sum
- The previously considered series converges but does not converge absolutely

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \cdots$$

• Considering only absolutely convergent sums makes the expectation independent of the order of summation

Expectations of Functions of Discrete RVs

• If X has pmf f and $g : \mathbb{R} \to \mathbb{R}$, then

$$E(g(X)) = \sum_{x} g(x)f(x)$$

whenever this sum is absolutely convergent.

Example

- Suppose X takes values -2, -1, 1, 3 with probabilities ¹/₄, ¹/₈, ¹/₄, ³/₈ respectively.
- Consider Y = X². It takes values 1, 4, 9 with probabilities ³/₈, ¹/₄, ³/₈ respectively.

$$E(Y) = \sum_{y} yP(Y = y) = 1 \cdot \frac{3}{8} + 4 \cdot \frac{1}{4} + 9 \cdot \frac{3}{8} = \frac{19}{4}$$

Alternatively,

$$E(Y) = E(X^2) = \sum_{x} x^2 P(X = x) = 4 \cdot \frac{1}{4} + 1 \cdot \frac{1}{8} + 1 \cdot \frac{1}{4} + 9 \cdot \frac{3}{8} = \frac{19}{4}$$

Expectation of Continuous Random Variables

Definition

The expectation of a continuous random variable with density function f is given by

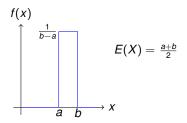
$$\Xi(X) = \int_{-\infty}^{\infty} xf(x) \, dx$$

whenever this integral is finite.

Example (Uniform Random Variable)

l

$$f(x) = \left\{egin{array}{cc} rac{1}{b-a} & ext{for } a \leq x \leq b \ 0 & ext{otherwise} \end{array}
ight.$$



Conditional Expectation

Definition

For discrete random variables, the conditional expectation of *Y* given X = x is defined as

$$E(Y|X=x) = \sum_{y} y f_{Y|X}(y|x)$$

For continuous random variables, the conditional expectation of Y given X is given by

$$E(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) \, dy$$

The conditional expectation is a function of the conditioning random variable i.e. $\psi(X) = E(Y|X)$

Example

For the following joint probability mass function, calculate E(Y) and E(Y|X).

Y/X	<i>X</i> 1	<i>X</i> ₂	<i>X</i> 3
<i>y</i> ₁	$\frac{1}{2}$	0	0
y 2	12 0	$\frac{1}{8}$	1 8
y 3	0		<u>1</u> 8

Law of Iterated Expectation

Theorem

The conditional expectation E(Y|X) satisfies

 $E\left[E(Y|X)\right]=E(Y)$

Example

A group of hens lay *N* eggs where *N* has a Poisson distribution with parameter λ . Each egg results in a healthy chick with probability *p* independently of the other eggs. Let *K* be the number of chicks. Find *E*(*K*).

Some Properties of Expectation

- If $a, b \in \mathbb{R}$, then E(aX + bY) = aE(X) + bE(Y)
- If X and Y are independent, E(XY) = E(X)E(Y)
- X and Y are said to be uncorrelated if E(XY) = E(X)E(Y)
- Independent random variables are uncorrelated but uncorrelated random variables need not be independent

Example

Y and Z are independent random variables such that Z is equally likely to be 1 or -1 and Y is equally likely to be 1 or 2.

Let X = YZ. Then X and Y are uncorrelated but not independent.

Variance

- Quantifies the spread of a random variable
- If k is a positive integer, the kth moment m_k of X is defined to be

$$m_k = E(X^k)$$

• The *k*th central moment σ_k is

$$\sigma_k = E\left[(X - m_1)^k \right]$$

- The first moment is the same as the expectation $m_1 = E(X)$
- The second central moment $\sigma_2 = E[(X m_1)^2]$ is called the variance
- The positive square root of the variance is called the standard deviation

$$\sigma = \sqrt{E\left[(X - m_1)^2\right]}$$

- Properties of Variance
 - var(X) ≥ 0
 - $\operatorname{var}(X) = E(X^2) [E(X)]^2$
 - For $a, b \in \mathbb{R}$, $var(aX + b) = a^2 var(X)$
 - var(X + Y) = var(X) + var(Y) if and only if X and Y are uncorrelated

Examples

Variance of a binomial random variable X with parameters n and p is

$$\operatorname{var}(X) = \sum_{k=0}^{n} k^2 P[X=k] - (np)^2 = \sum_{k=0}^{n} k^2 \binom{n}{k} p^k (1-p)^{n-k} - n^2 p^2$$

= $np(1-p)$

• Variance of a Poisson random variable X with parameter λ is given by

$$\operatorname{var}(X) = \sum_{k=0}^{\infty} k^2 P[X=k] - \lambda^2 = \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} - \lambda^2 = \lambda$$

• Variance of a uniform random variable X on [a, b] is

$$\operatorname{var}(X) = \int_{-\infty}^{\infty} x^2 f_U(x) \, dx - \left(\frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{12}$$

Expectation via the Distribution Function

For a discrete random variable X taking values in $\{0, 1, 2, ...\}$, the expected value is given by

$$\mathsf{E}[X] = \sum_{i=1}^{\infty} \mathsf{P}(X \ge i)$$

Proof

$$\sum_{i=1}^{\infty} P(X \ge i) = \sum_{i=1}^{\infty} \sum_{j=i}^{\infty} P(X = j) = \sum_{j=1}^{\infty} \sum_{i=1}^{j} P(X = j) = \sum_{j=1}^{\infty} j P(X = j) = E[X]$$

Example

Let X_1, \ldots, X_m be *m* independent discrete random variables taking only non-negative integer values. Let all of them have the same probability mass function $P(X = n) = p_n$ for $n \ge 0$. What is the expected value of the minimum of X_1, \ldots, X_m ?

Expectation via the Distribution Function

For a continuous random variable X taking only non-negative values, the expected value is given by

$$E[X] = \int_0^\infty P(X \ge x) \ dx$$

Proof

$$\int_0^\infty P(X \ge x) \, dx = \int_0^\infty \int_x^\infty f_X(t) \, dt \, dx = \int_0^\infty \int_0^t f_X(t) \, dx \, dt$$
$$= \int_0^\infty t f_X(t) \, dt = E[X]$$

Probabilistic Inequalities

Markov's Inequality

If X is a non-negative random variable and a > 0, then

$$P(X \ge a) \le \frac{E(X)}{a}.$$

Proof

We first claim that if $X \ge Y$, then $E(X) \ge E(Y)$. Let Y be a random variable such that

$$Y = \begin{cases} a & \text{if } X \ge a, \\ 0 & \text{if } X < a. \end{cases}$$

Then $X \ge Y$ and $E(X) \ge E(Y) = aP(X \ge a) \implies P(X \ge a) \le \frac{E(X)}{a}$.

Exercise

• Prove that if $E(X^2) = 0$ then P(X = 0) = 1.

Chebyshev's Inequality

Let X be a random variable and a > 0. Then $P(|X - E(X)| \ge a) \le \frac{\operatorname{var}(X)}{a^2}$. **Proof** Let $Y = (X - E(X))^2$.

$$P(|X-E(X)| \ge a) = P(Y \ge a^2) \le \frac{E(Y)}{a^2} = \frac{\operatorname{var}(X)}{a^2}.$$

Setting $a = k\sigma$ where k > 0 and $\sigma = \sqrt{\operatorname{var}(X)}$, we get

$$P(|X-E(X)| \ge k\sigma) \le \frac{1}{k^2}.$$

Exercises

- Suppose we have a coin with an unknown probability *p* of showing heads. We want to estimate *p* to within an accuracy of *ε* > 0. How can we do it?
- Prove that $P(X = c) = 1 \iff var(X) = 0$.

Cauchy-Schwarz Inequality

For random variables X and Y, we have

$$|E(XY)| \leq \sqrt{E(X^2)}\sqrt{E(Y^2)}$$

Equality holds if and only if P(X = cY) = 1 for some constant *c*.

Proof

For any real k, we have $E[(kX + Y)^2] \ge 0$. This implies

$$k^2 E(X^2) + 2k E(XY) + E(Y^2) \ge 0$$

for all k. The above quadratic must have a non-positive discriminant.

$$[2E(XY)]^2 - 4E(X^2)E(Y^2) \le 0.$$

Questions?