Gaussian Random Processes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

April 9, 2014

Gaussian Random Process

Definition

A random process X(t) is Gaussian if its samples $X(t_1), \ldots, X(t_n)$ are jointly Gaussian for any $n \in \mathbb{N}$ and distinct sample locations t_1, t_2, \ldots, t_n .

Let $\mathbf{X} = \begin{bmatrix} X(t_1) & \cdots & X(t_n) \end{bmatrix}^T$ be the vector of samples. The joint density is given by

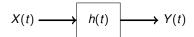
$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{C})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{C}^{-1}(\mathbf{x} - \mathbf{m})\right)$$

where

$$\mathbf{m} = E[\mathbf{X}], \ \mathbf{C} = E\left[(\mathbf{X} - \mathbf{m})(\mathbf{X} - \mathbf{m})^T \right]$$

Properties of Gaussian Random Process

- The mean and autocorrelation functions completely characterize a Gaussian random process.
- Wide-sense stationary Gaussian processes are strictly stationary.
- If the input to a stable linear filter is a Gaussian random process, the output is also a Gaussian random process.



White Gaussian Noise

Definition

A zero mean WSS Gaussian random process with constant power spectral density

$$S_n(f)=\frac{N_0}{2}.$$

 $\frac{N_0}{2}$ is termed the two-sided PSD and has units Watts per Hertz.

Remarks

- Autocorrelation function $R_n(au) = rac{N_0}{2}\delta(au)$
- Infinite Power! Ideal model of Gaussian noise occupying more bandwidth than the signals of interest.

White Gaussian Noise through Correlators

Consider the output of a correlator with WGN input

$$Z = \int_{-\infty}^{\infty} n(t)u(t) dt = \langle n, u \rangle$$

where u(t) is a deterministic finite-energy signal

- Z is a Gaussian random variable
- The mean of Z is

$$E[Z] = \int_{-\infty}^{\infty} E[n(t)] u(t) dt = 0$$

The variance of Z is

$$\operatorname{var}(Z) = E\left[\left(\langle n, u \rangle\right)^{2}\right] = E\left[\int n(t)u(t) \, dt \int n(s)u(s) \, ds\right]$$

$$= \int \int u(t)u(s)E\left[n(t)n(s)\right] \, dt \, ds$$

$$= \int \int u(t)u(s)\frac{N_{0}}{2}\delta(t-s) \, dt \, ds$$

$$= \frac{N_{0}}{2}\int u^{2}(t) \, dt = \frac{N_{0}}{2}\|u\|^{2}$$

White Gaussian Noise through Correlators

Proposition

Let $u_1(t)$ and $u_2(t)$ be linearly independent finite-energy signals and let n(t) be WGN with PSD $S_n(t) = \frac{N_0}{2}$. Then $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are jointly Gaussian with covariance

$$\operatorname{cov}(\langle n, u_1 \rangle, \langle n, u_2 \rangle) = \frac{N_0}{2} \langle u_1, u_2 \rangle.$$

Proof

To prove that $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are jointly Gaussian, consider a non-trivial linear combination $a\langle n, u_1 \rangle + b\langle n, u_2 \rangle$

$$a\langle n, u_1 \rangle + b\langle n, u_2 \rangle = \int n(t) \left[au_1(t) + bu_2(t) \right] dt.$$

This is the result of passing n(t) through a correlator. So it is a Gaussian random variable.

White Gaussian Noise through Correlators

Proof (continued)

$$\begin{aligned} \text{cov}\left(\langle n, u_1 \rangle, \langle n, u_2 \rangle\right) &= & E\left[\langle n, u_1 \rangle \langle n, u_2 \rangle\right] \\ &= & E\left[\int n(t)u_1(t) \ dt \int n(s)u_2(s) \ ds\right] \\ &= & \int \int u_1(t)u_2(s)E\left[n(t)n(s)\right] \ dt \ ds \\ &= & \int \int u_1(t)u_2(s)\frac{N_0}{2}\delta(t-s) \ dt \ ds \\ &= & \frac{N_0}{2}\int u_1(t)u_2(t) \ dt \\ &= & \frac{N_0}{2}\langle u_1, u_2 \rangle \end{aligned}$$

If $u_1(t)$ and $u_2(t)$ are orthogonal, $\langle n, u_1 \rangle$ and $\langle n, u_2 \rangle$ are independent.

Reference

• Chapter 3, Fundamentals of Digital Communication, Upamanyu Madhow, Cambridge University Press, 2008. Questions?