Generating Functions

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 14, 2014

Generating Functions

Definition

The generating function of a sequence of real numbers $\left\{a_{i}: i=0,1,2, \ldots\right\}$ is defined by

$$
G(s)=\sum_{i=0}^{\infty} a_{i} s^{i}
$$

for $s \in \mathbb{R}$ for which the sum converges.

Example

Consider the sequence $a_{i}=2^{-i}, i=0,1,2, \ldots$.

$$
G(s)=\sum_{i=0}^{\infty}\left(\frac{s}{2}\right)^{i}=\frac{1}{1-\frac{s}{2}} \quad \text { for }|s|<2 .
$$

Definition

Suppose X is a discrete random variable taking non-negative integer values $\{0,1,2, \ldots\}$. The generating function of X is the generating function of its probability mass function.

$$
G(s)=\sum_{i=0}^{\infty} P[X=i] s^{i}=E\left[s^{X}\right]
$$

Examples of Generating Functions

- Constant RV: Suppose $P(X=c)=1$ for some fixed $c \in \mathbb{Z}^{+}$

$$
G(s)=E\left(s^{X}\right)=s^{c}
$$

- Bernoulli RV: $P(X=1)=p$ and $P(X=0)=1-p$

$$
G(s)=1-p+p s
$$

- Geometric RV: $P(X=k)=p(1-p)^{k-1}$ for $k \geq 1$

$$
G(s)=\sum_{k=1}^{\infty} s^{k} p(1-p)^{k-1}=\frac{p s}{1-s(1-p)}
$$

- Poisson RV: $P[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k \geq 0$

$$
G(s)=\sum_{k=0}^{\infty} s^{k} \frac{e^{-\lambda} \lambda^{k}}{k!}=e^{\lambda(s-1)}
$$

Moments from the Generating Function

Theorem

If X has generating function $G(s)$ then

- $E[X]=G^{(1)}(1)$
- $E[X(X-1) \cdots(X-k+1)]=G^{(k)}(1)$
where $G^{(k)}$ is the k th derivative of $G(s)$.
Result
$\operatorname{var}(X)=G^{(2)}(1)+G^{(1)}(1)-G^{(1)}(1)^{2}$

Example (Geometric RV)

A geometric RV X has generating function $G(s)=\frac{p s}{1-s(1-p)} \cdot \operatorname{var}(X)=$?

$$
\begin{aligned}
G^{(1)}(1) & =\left.\frac{\partial}{\partial s} \frac{p s}{1-s(1-p)}\right|_{s=1}=\frac{1}{p} \\
G^{(2)}(1) & =\left.\frac{\partial^{2}}{\partial s^{2}} \frac{p s}{1-s(1-p)}\right|_{s=1}=\frac{2(1-p)}{p}+\frac{2(1-p)^{2}}{p^{2}} \\
\operatorname{var}(X) & =\frac{1-p}{p^{2}}
\end{aligned}
$$

Generating Function of a Sum of Independent RVs

Theorem

If X and Y are independent, $G_{X+Y}(s)=G_{X}(s) G_{Y}(s)$

Example (Binomial RV)

Using above theorem, how can we find the generating function of a binomial random variable?
A binomial random variable with parameters n and p is a sum of n independent Bernoulli random variables.

$$
S=X_{1}+X_{2}+\cdots+X_{n-1}+X_{n}
$$

where each X_{i} has generating function $G(s)=1-p+p s=q+p s$.

$$
G_{s}(s)=[G(s)]^{n}=[q+p s]^{n}
$$

Example (Sum of independent Poisson RVs)

Let X and Y be independent Poisson random variables with parameters λ and μ respectively. What is the distribution of $X+Y$?
Poisson with parameter $\lambda+\mu$

Sum of a Random Number of Independent RVs

Theorem

Let X_{1}, X_{2}, \ldots is a sequence of independent identically distributed (iid) random variables with common generating function $G_{X}(s)$. Let N be a random variable which is independent of the X_{i} 's and has generating function $G_{N}(s)$. Then

$$
S=X_{1}+X_{2}+\cdots+X_{N}
$$

has generating function given by

$$
G_{S}(s)=G_{N}\left(G_{X}(s)\right)
$$

Example

A group of hens lay N eggs where N has a Poisson distribution with parameter λ. Each egg results in a healthy chick with probability p independently of the other eggs. Let K be the number of healthy chicks. Find the distribution of K.
Solution Poisson with parameter λp

Joint Generating Function

Definition

The joint generating function of random variables X and Y taking values in the non-negative integers is defined by

$$
G_{X, Y}\left(s_{1}, s_{2}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} P[X=i, Y=j] s_{1}^{i} s_{2}^{j}=E\left[s_{1}^{X} s_{2}^{Y}\right]
$$

Theorem
Random variables X and Y are independent if and only if

$$
G_{X, Y}\left(s_{1}, s_{2}\right)=G_{X}\left(s_{1}\right) G_{Y}\left(s_{2}\right), \quad \text { for all } s_{1} \text { and } s_{2} .
$$

Application: Coin Toss Game

A biased coin which shows heads with probability p is tossed repeatedly. Player A wins if m heads appear before n tails, and player B wins otherwise. What is the probability of A winning?

- Let $p_{m, n}$ be the probability that A wins
- Let $q=1-p$. We have the following recurrence relation

$$
p_{m, n}=p p_{m-1, n}+q p_{m, n-1}, \text { for } m, n \geq 1
$$

- For $m, n>0$, we have $p_{m, 0}=0$ and $p_{0, n}=1$. Let $p_{0,0}=0$.
- Consider the generating function

$$
G(x, y)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} p_{m, n} x^{m} y^{n}
$$

- Multiplying the recurrence relation by $x^{m} y^{n}$ and sum over $m, n \geq 1$

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p_{m, n} x^{m} y^{n}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p p_{m-1, n} x^{m} y^{n}+\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} q p_{m, n-1} x^{m} y^{n}
$$

Coin Toss Game

- Providing the terms corresponding to $m=0$ and $n=0$

$$
\begin{aligned}
G(x, y)-\sum_{m=1}^{\infty} p_{m, 0} x^{m}-\sum_{n=1}^{\infty} p_{0, n} y^{n} & =p x \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p_{m-1, n} x^{m-1} y^{n} \\
& +q y \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p_{m, n-1} x^{m} y^{n-1}
\end{aligned}
$$

- Using the boundary conditions we have

$$
\begin{aligned}
G(x, y)-\frac{y}{1-y} & =p x G(x, y)+q y\left(G(x, y)-\frac{y}{1-y}\right) \\
\Longrightarrow G(x, y) & =\frac{y(1-q y)}{(1-y)(1-p x-q y)}
\end{aligned}
$$

- The coefficient of $x^{m} y^{n} n G(x, y)$ gives $p_{m, n}$

Application: Random Walk

- Let X_{1}, X_{2}, \ldots be independent random variables taking value 1 with probability p and value -1 with probability $1-p$
- The sequence $S_{n}=\sum_{i=1}^{n} X_{i}$ is a random walk starting at the origin
- What is the probability that the walker ever returns to the orgin?
- Let $f_{0}(n)=\operatorname{Pr}\left(S_{1} \neq 0, \ldots, S_{n-1} \neq 0, S_{n}=0\right)$ be the probability that the first return to the origin occurs after n steps
- Let $p_{0}(n)=\operatorname{Pr}\left(S_{n}=0\right)$ be the probability of being at the origin after n steps
- Consider the following generating functions

$$
P_{0}(s)=\sum_{n=0}^{\infty} p_{0}(n) s^{n}, \quad F_{0}(s)=\sum_{n=0}^{\infty} f_{0}(n) s^{n}
$$

- $P_{0}(s)=1+P_{0}(s) F_{0}(s)$
- $P_{0}(s)=\left(1-4 p q s^{2}\right)^{-\frac{1}{2}}$
- $F_{0}(s)=1-\left(1-4 p q s^{2}\right)^{\frac{1}{2}}$
- $\sum_{n=1}^{\infty} f_{0}(n)=F_{0}(1)=1-|p-q|$

Reference

- Chapter 5, Probability and Random Processes, Grimmett and Stirzaker, Third Edition, 2001.

