Generating Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

March 12, 2014

Generating Random Variables

- Applications where random variables need to be generated
- Simulations
- Lotteries
- Computer Games
- General strategy for generating an arbitrary random variable
- Generate uniform random variables in the unit interval
- Transform the uniform random variables to obtain the desired random variables

Generating Uniform Random Variables

- $X \sim \mathcal{U}[a, b]$ has density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

- The distribution function is

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<a \\
\frac{x-a}{b-a} & a \leq x \leq b \\
1 & x>b
\end{array}\right.
$$

- $Y \sim \mathcal{U}[0,1]$ has distribution function

$$
F_{Y}(x)=\left\{\begin{array}{cc}
0 & x<0 \\
x & 0 \leq x \leq 1 \\
1 & x>1
\end{array}\right.
$$

- Given Y, can we generate X ?
- $(b-a) Y+a$ has the same distribution as $\mathcal{U}[a, b]$

Generating $\mathcal{U}[0,1]$

- Computers can represent reals upto a finite precision
- Generate a random integer X from 0 to some positive integer m
- Generate the uniform random variable in $[0,1]$ as

$$
U=\frac{X}{m}
$$

- The linear congruential method for generating integers from 0 to m

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m, \quad n \geq 0
$$

where m, a, c are integers called the modulus, multiplier and increment respectively. X_{0} is called the starting value.

- For $m=10$ and $X_{0}=a=c=7$, the sequence generated is

$$
7,6,9,0,7,6,9,0, \cdots
$$

- The linear congruential method is eventually periodic

Maximal Period Linear Congruential Generators

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m, \quad n \geq 0
$$

Theorem

The linear congruential sequence has period m if and only if

- c is relatively prime to m
- $b=a-1$ is a multiple of p, for every prime p dividing m
- b is a multiple of 4 , if m is a multiple of 4 .

Remarks

- Having maximal period is not a guarantee of randomness
- For $a=c=1$, we have $X_{n+1}=\left(X_{n}+1\right) \bmod m$
- Additional tests are needed (see reference on last slide)

Generating a Bernoulli Random Variable

- The probability mass function is given by

$$
P[X=x]= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0\end{cases}
$$

where $0 \leq p \leq 1$

- Generate a uniform random variable $U \sim \mathcal{U}[0,1]$
- Generate the Bernoulli random variable by the following rule

$$
X= \begin{cases}1 & \text { if } U \leq p \\ 0 & \text { if } U>p\end{cases}
$$

- How can we generate a binomial random variable?

The Inverse Transform Method

- Suppose we want to generate a random variable with distribution function F. Assume F is one-to-one.
- Generate a uniform random variable $U \sim \mathcal{U}[0,1]$
- $X=F^{-1}(U)$ has the distribution function F

$$
P(X \leq x)=P\left(F^{-1}(U) \leq x\right)=P(U \leq F(x))=F(x)
$$

Example (Generating Exponential RVs)

X is an exponential RV with parameter $\lambda>0$ if it has distribution function

$$
F(x)=1-e^{-\lambda x}, \quad x \geq 0
$$

How can it be generated?

Generating Discrete Random Variables

- Suppose we want to generate a discrete random variable X with distribution function F. F is usually not one-to-one.
- Let $x_{1} \leq x_{2} \leq x_{3} \leq \cdots$ be the values taken by X
- Generate a uniform random variable $U \sim \mathcal{U}[0,1]$
- Generate X according to the rule

$$
X= \begin{cases}x_{1} & \text { if } 0 \leq U \leq F\left(x_{1}\right) \\ x_{k} & \text { if } F\left(x_{k-1}\right)<U \leq F\left(x_{k}\right) \text { for } k \geq 2\end{cases}
$$

Example (Generating Binomial RVs)

The probability mass function of a Binomial RV X with parameters n and p is

$$
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { if } 0 \leq k \leq n
$$

How can it be generated?

Box-Muller Method for Generating Gaussian RVs

- Generate two independent uniform RVs U_{1} and U_{2} between 0 and 1
- Let $V_{1}=2 U_{1}-1$ and $V_{2}=2 U_{2}-1$
- Let $S=V_{1}^{2}+V_{2}^{2}$.
- If $S \geq 1$, generate new U_{i} 's.
- If $S<1$, let

$$
x_{1}=v_{1} \sqrt{\frac{-2 \ln S}{S}}, \quad x_{2}=v_{2} \sqrt{\frac{-2 \ln S}{S}}
$$

- X_{1} and X_{2} are independent standard Gaussian random variables

Proof

- $\left(V_{1}, V_{2}\right)$ represents a random point in the unit circle
- Let $V_{1}=R \cos \Theta$ and $V_{2}=R \sin \Theta$
- $\Theta \sim \mathcal{U}[0,2 \pi]$ and $R^{2}=S \sim \mathcal{U}[0,1]$. Θ and S are independent
- $X_{1}=\sqrt{-2 \ln S} \cos \Theta$ and $X_{2}=\sqrt{-2 \ln S} \sin \Theta$
- X_{1}, X_{2} also are in polar coordinates with radius $R^{\prime}=\sqrt{-2 \ln S}$ and angle Θ

Proof Continued

- The probability density function of R^{\prime} is $f_{R}(r)=r e^{-r^{2} / 2}$

$$
\operatorname{Pr}\left[R^{\prime} \leq r\right]=\operatorname{Pr}[\sqrt{-2 \ln S} \leq r]=\operatorname{Pr}\left[S \geq e^{-r^{2} / 2}\right]=1-e^{-r^{2} / 2}
$$

- The joint probability distribution of X_{1} and X_{2} is given by

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) & =\int_{\left\{(r, \theta) \mid r \cos \theta \leq x_{1}, r \sin \theta \leq x_{2}\right\}} \frac{1}{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \theta \\
& =\frac{1}{2 \pi} \int_{\left\{x \leq x_{1}, y \leq x_{2}\right\}} e^{-\frac{x^{2}+y^{2}}{2}} d x d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x_{1}} e^{-\frac{x^{2}}{2}} d x \cdot \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x_{2}} e^{-\frac{y^{2}}{2}} d y
\end{aligned}
$$

- This proves that X_{1} and X_{2} are independent and have standard Gaussian distribution

Acceptance-Rejection Method

- Suppose we want to generate a random variable X having density f
- Suppose X is difficult to generate using the inversion method
- Suppose there is a random variable Y with density g which is easy to generate
- For some $c \in \mathbb{R}$, suppose f and g satisfy

$$
\frac{f(y)}{\operatorname{cg}(y)} \leq 1 \text { for all } y .
$$

- Generate a uniform random variable $U \sim \mathcal{U}[0,1]$
- Generate the random variable Y
- If $U \leq \frac{f(Y)}{\operatorname{cg}(Y)}$, set $X=Y$. Otherwise, generate another pair (U, Y) and keep trying until the inequality is satisfied
- To show that the method is correct, we have to show that

$$
P\left(Y \leq x \left\lvert\, U \leq \frac{f(Y)}{c g(Y)}\right.\right)=F(x)
$$

where $F(x)=\int_{-\infty}^{x} f(t) d t$

Example of Acceptance-Rejection Method

- Suppose we want to generate a random variable X with probability density function

$$
f(x)=20 x(1-x)^{3}, \quad 0<x<1
$$

- We need a pdf $g(x)$ such that $\frac{f(x)}{g(x)} \leq c$ for some $c \in \mathbb{R}$
- Consider $g(x)=1$ for $0<x<1$

$$
\frac{f(x)}{g(x)}=20 x(1-x)^{3} \leq 20 \cdot \frac{1}{4} \cdot\left(\frac{3}{4}\right)^{3}=\frac{135}{64}
$$

- Let $C=\frac{135}{64} \Longrightarrow \frac{f(x)}{\operatorname{cg}(x)}=\frac{256}{27} x(1-x)^{3}$
- X can now be generated as follows

1. Generate $U \sim \mathcal{U}[0,1]$ and $Y \sim \mathcal{U}[0,1]$
2. If $U \leq \frac{256}{27} Y(1-Y)^{3}$, set $X=Y$
3. Otherwise, return to step 1

Reference

- Chapter 3, The Art of Computer Programming, Seminumerical Algorithms (Volume 2), Third Edition, Pearson Education, 1998.

