Properties of Probability Measures

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 17, 2014

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω, a σ-field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}).
Definition
A probability measure on (Ω, \mathcal{F}) is a function $P: \mathcal{F} \rightarrow[0,1]$ satisfying
(a) $P(\phi)=0, P(\Omega)=1$
(b) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ is a collection of disjoint members in \mathcal{F}, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Some Properties of Probability Measures

- $P\left(A^{c}\right)=1-P(A)$
- Define $B \backslash A=B \cap A^{c}$. If $A \subseteq B$, then $P(B)=P(A)+P(B \backslash A) \geq P(A)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- For any $n \in \mathbb{N}$

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n} A_{i}\right)= & \sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)- \\
& \cdots+(-1)^{n+1} P\left(A_{1} \cap A_{2} \cap \cdots A_{n}\right)
\end{aligned}
$$

P is a continuous set function

Theorem

Let A_{1}, A_{2}, \ldots be an increasing sequence of events, so that $A_{1} \subseteq A_{2} \subseteq \cdots$. Let A be their limit

$$
A=\bigcup_{i=1}^{\infty} A_{i}=\lim _{i \rightarrow \infty} A_{i} .
$$

Then $P(A)=\lim _{i \rightarrow \infty} P\left(A_{i}\right)$.

Proof.

The set A can be written as a disjoint union as follows

$$
A=A_{1} \bigcup\left(A_{2} \backslash A_{1}\right) \bigcup\left(A_{3} \backslash A_{2}\right) \bigcup\left(A_{4} \backslash A_{3}\right) \cdots
$$

By the countable additivity property of P, we have

$$
\begin{aligned}
P(A) & =P\left(A_{1}\right)+\sum_{i=1}^{\infty} P\left(A_{i+1} \backslash A_{i}\right)=P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n} P\left(A_{i+1} \backslash A_{i}\right) \\
& =P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[P\left(A_{i+1}\right)-P\left(A_{i}\right)\right]=P\left(A_{1}\right)+\lim _{n \rightarrow \infty}\left[P\left(A_{n+1}\right)-P\left(A_{1}\right)\right] \\
& =\lim _{n \rightarrow \infty} P\left(A_{n+1}\right)
\end{aligned}
$$

P is a continuous set function

Theorem

Let B_{1}, B_{2}, \ldots be a decreasing sequence of events, so that $B_{1} \supseteq B_{2} \supseteq \cdots$. Let B be their limit

$$
B=\bigcap_{i=1}^{\infty} B_{i}=\lim _{i \rightarrow \infty} B_{i} .
$$

Then $P(B)=\lim _{i \rightarrow \infty} P\left(B_{i}\right)$.

Proof.

Let $A_{i}=B_{i}^{c}$ and use the previous theorem.

Questions?

