Probability Spaces

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 10, 2014

Probability Theory

- Helps us make decisions when faced with incomplete information
- A tool for modelling complex situations
- Applications
- Statistical Inference
- Communications
- Signal Processing

What is Probability?

- Informally, a method of quantifying the degree of certainty of a situation
- Classical definition: Ratio of favorable outcomes and the total number of outcomes provided all outcomes are equally likely.

$$
P(A)=\frac{N_{A}}{N}
$$

- Relative frequency definition:

$$
P(A)=\lim _{N \rightarrow \infty} \frac{N_{A}}{N}
$$

- Axiomatic definition: A countably additive function defined on the set of events with range in the interval $[0,1]$.
- The axiomatic definition will be used in this course

Sample Space

The first step in modelling a complex situation is to list all the possible outcomes

Definition

The set of all possible outcomes of an experiment is called the sample space and is denoted by Ω.

Examples

- Coin toss: $\Omega=\{$ Heads, Tails $\}$
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$
- Tossing of two coins: $\Omega=\{(H, H),(T, H),(H, T),(T, T)\}$
- Coin is tossed until heads appear. What is Ω ?
- Life expectancy of a random person. $\Omega=[0,120]$ years

Events

- An event is a subset of the sample space

Examples

- Coin toss: $\Omega=\{$ Heads, Tails $\}$.
$E=\{$ Heads $\}$ is the event that a head appears on the flip of a coin.
- Roll of a die: $\Omega=\{1,2,3,4,5,6\}$. $E=\{2,4,6\}$ is the event that an even number appears.
- Life expectancy. $\Omega=[0,120]$.
$E=[50,120]$ is the event that a random person lives beyond 50 years.

Language of Events

Typical Notation	Language of Sets	Language of Events
Ω	Whole space	Certain event
ϕ	Empty set	Impossible event
A	Subset of Ω	Event that some outcome in A occurs
A^{c}	Complement of A	Event that no outcome in A occurs
$A \cup B$	Union	Event that an outcome in A or B or both occurs
$A \cap B$	Intersection	Event that an outcome in both $A \cap B=\phi$
Disjoint sets	A and B occurs	

Which subsets must be events?

- An event is a subset of a sample space. But can all subsets of a sample space be events?
- Yes, if the sample space is finite or countable
- No, if the sample space is uncountable (example in next lecture)
- Let \mathcal{F} be a subset of 2^{Ω} consisting of all events
- If $\mathcal{F} \neq 2^{\Omega}$, which subsets of Ω must be there in \mathcal{F} ?
- If we are interested in an event A, then A^{C} is also interesting

$$
A \in \mathcal{F} \Longrightarrow A^{c} \in \mathcal{F}
$$

- If events A and B are interesting, then their simultaneous occurrence is also interesting

$$
A, B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F}
$$

- These two requirements give us the following (Why?)

$$
A, B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F}
$$

- They also give us $\phi \in \mathcal{F}$ if \mathcal{F} is nonempty (Why?)
- Any \mathcal{F} which satisfies these conditions is called a field
- To deal with infinite sample spaces, \mathcal{F} needs to be a σ-field

σ-fields

Definition

A collection \mathcal{F} of subsets of Ω is called a σ-field if it satisfies
(a) $\phi \in \mathcal{F}$
(b) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
(c) if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$

Examples

- $\mathcal{F}=\{\phi, \Omega\}$ is the smallest σ-field
- If $A \subseteq \Omega, \mathcal{F}=\left\{\phi, A, A^{C}, \Omega\right\}$ is a σ-field
- 2^{Ω} is a σ-field

Probability Measure

Definition

A probability measure on (Ω, \mathcal{F}) is a function $P: \mathcal{F} \rightarrow[0,1]$ satisfying
(a) $P(\phi)=0, P(\Omega)=1$
(b) if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ is a collection of disjoint members in \mathcal{F}, then

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Examples

- Coin toss: $\Omega=\{\mathrm{H}, \mathrm{T}\}, \mathcal{F}=\{\phi, \mathrm{H}, \mathrm{T}, \Omega\}$

$$
P(\phi)=0, \quad P(\mathrm{H})=p, \quad P(\mathrm{~T})=1-p, \quad P(\Omega)=1
$$

- Roll of a die: $\Omega=\{1,2,3,4,5,6\}, \mathcal{F}=2^{\Omega}, P(\{i\})=p_{i}$ for $i=1, \ldots, 6$

$$
P(A)=\sum_{i \in A} p_{i} \text { for any } A \subseteq \Omega
$$

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of

- a set Ω,
- a σ-field \mathcal{F} of subsets of Ω and
- a probability measure P on (Ω, \mathcal{F}).

Questions?

