Random Processes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

April 2, 2014

Random Process

Definition

An indexed collection of random variables $\{X_t : t \in \mathcal{T}\}$.

Discrete-time Random Process A random process where the index set $\mathcal{T} = \mathbb{Z}$ or [0, 1]

A random process where the index set $\mathcal{T} = \mathbb{Z}$ or $\{0, 1, 2, 3, \ldots\}$.

Example: Random walk $T = \{0, 1, 2, 3, ...\}, X_0 = 0, X_n$ independent and equally likely to be ± 1 for $n \ge 1$

$$S_n = \sum_{i=0}^n X_i$$

Continuous-time Random Process

A random process where the index set $\mathcal{T} = \mathbb{R}$ or $[0, \infty)$. The notation X(t) is used to represent continuous-time random processes.

Example: Thermal Noise

Realization of a Random Process

- The outcome of an experiment is specified by a sample point ω in the sample space Ω
- A realization of a random variable X is its value $X(\omega)$
- A realization of a random process X_t is the function $X_t(\omega)$ of t
- A realization is also called a sample function of the random process.

Example

Consider $\Omega = [0, 1]$. For each $\omega \in \Omega$, consider its dyadic expansion

$$\omega = \sum_{n=1}^{\infty} \frac{d_n(\omega)}{2^n} = 0.d_1(\omega)d_2(\omega)d_3(\omega)\cdots$$

where each $d_n(\omega)$ is either 0 or 1.

An infinite number of coin tosses with Heads being 0 and Tails being 1 can be associated with each ω as

$$X_n(\omega) = d_n(\omega)$$

For each $\omega \in \Omega$, we get a realization of this random process.

Specification of a Random Process

 A random process is specified by the joint cumulative distribution of the random variables

 $X(t_1), X(t_2), \ldots, X(t_n)$

for any set of sample times $\{t_1, t_2, \ldots, t_n\}$ and any $n \in \mathbb{N}$

 $F_{X(t_1),X(t_2),...,X(t_n)}(x_1,x_2,...,x_n) = \Pr[X(t_1) \le x_1,X(t_2) \le x_2,...,X(t_n) \le x_n]$

- For continuous-time random processes, the joint probability density is sufficient
- For discrete-time random processes, the joint probability mass function is sufficient
- Without additional restrictions, this requires specifying a lot of joint distributions
- One such restriction is stationarity

Stationary Random Process

Definition

A random process X(t) is said to be *stationary in the strict sense* or *strictly stationary* if the joint distribution of $X(t_1), X(t_2), \ldots, X(t_k)$ is the same as the joint distribution of $X(t_1 + \tau), X(t_2 + \tau), \ldots, X(t_k + \tau)$ for all time shifts τ , all k, and all observation instants t_1, \ldots, t_k .

$$F_{X(t_1),...,X(t_k)}(x_1,...,x_k) = F_{X(t_1+\tau),...,X(t_k+\tau)}(x_1,...,x_k)$$

Properties

- A stationary random process is statistically indistinguishable from a delayed version of itself.
- For *k* = 1, we have

$$F_{X(t)}(x) = F_{X(t+\tau)}(x)$$

for all *t* and τ . The first order distribution is independent of time.

• For k = 2 and $\tau = -t_1$, we have

$$F_{X(t_1),X(t_2)}(x_1,x_2) = F_{X(0),X(t_2-t_1)}(x_1,x_2)$$

for all t_1 and t_2 . The second order distribution depends only on $t_2 - t_1$.

Mean Function

• The mean of a random process *X*(*t*) is the expectation of the random variable obtained by observing the process at time *t*

$$\mu_X(t) = E[X(t)] = \int_{-\infty}^{\infty} x f_{X(t)}(x) \, dx$$

• For a strictly stationary random process *X*(*t*), the mean is a constant

$$\mu_X(t) = \mu$$
 for all t

Example $X(t) = \cos(2\pi ft + \Theta), \Theta \sim U[-\pi, \pi]. \ \mu_X(t) =?$

Example

 $X_n = Z_1 + \cdots + Z_n$, $n = 1, 2, \ldots$ where Z_i are i.i.d. with zero mean and variance σ^2 . $\mu_X(n) = ?$

Autocorrelation Function

• The autocorrelation function of a random process *X*(*t*) is defined as

$$R_X(t_1, t_2) = E\left[X(t_1)X(t_2)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{X(t_1), X(t_2)}(x_1, x_2) \, dx_1 \, dx_2$$

 For a strictly stationary random process X(t), the autocorrelation function depends only on the time difference t₂ - t₁

 $R_X(t_1, t_2) = R_X(0, t_2 - t_1)$ for all t_1, t_2

In this case, $R_X(0, t_2 - t_1)$ is simply written as $R_X(t_2 - t_1)$

Example

 $X(t) = \cos(2\pi ft + \Theta), \Theta \sim U[-\pi,\pi]. R_X(t_1,t_2) =?$

Example

 $X_n = Z_1 + \cdots + Z_n$, $n = 1, 2, \ldots$ where Z_i are i.i.d. with zero mean and variance σ^2 . $R_X(n_1, n_2) = ?$

Wide-Sense Stationary Random Process

Definition

A random process X(t) is said to be wide-sense stationary or weakly stationary or second-order stationary if

 $\mu_X(t) = \mu_X(0)$ for all t and $R_X(t_1, t_2) = R_X(t_1 - t_2, 0)$ for all t_1, t_2 .

Remarks

- A strictly stationary random process is also wide-sense stationary if the first and second order moments exist.
- A wide-sense stationary random process need not be strictly stationary.

Example

Is the following random process wide-sense stationary?

$$X(t) = A\cos\left(2\pi f_c t + \Theta\right)$$

where A and f_c are constants and Θ is uniformly distributed on $[-\pi, \pi]$.

Properties of the Autocorrelation Function

• Consider the autocorrelation function of a wide-sense stationary random process *X*(*t*)

$$R_X(\tau) = E\left[X(t+\tau)X(t)\right]$$

• $R_X(\tau)$ is an even function of τ

$$R_X(\tau) = R_X(-\tau)$$

• $R_X(\tau)$ has maximum magnitude at $\tau = 0$

 $|R_X(\tau)| \leq R_X(0)$

 The autocorrelation function measures the interdependence of two random variables obtained by measuring X(t) at times τ apart

Ergodic Processes

- Let X(t) be a wide-sense stationary random process with mean μ_X and autocorrelation function R_X(τ) (also called the ensemble averages)
- Let x(t) be a realization of X(t)
- For an observation interval [-T, T], the time average of x(t) is given by

$$\mu_x(T) = \frac{1}{2T} \int_{-T}^T x(t) dt$$

- The process X(t) is said to be ergodic in the mean if μ_x(T) converges to μ_x in the squared mean as T → ∞
- For an observation interval [-*T*, *T*], the time-averaged autocorrelation function is given by

$$R_x(\tau,T) = \frac{1}{2T} \int_{-T}^{T} x(t+\tau) x(t) dt$$

• The process X(t) is said to be ergodic in the autocorrelation function if $R_x(\tau, T)$ converges to $R_x(\tau)$ in the squared mean as $T \to \infty$

Passing a Random Process through an LTI System

$$X(t) \longrightarrow \text{LTI System} \longrightarrow Y(t)$$

 Consider a linear time-invariant (LTI) system h(t) which has random processes X(t) and Y(t) as input and output

$$Y(t) = \int_{-\infty}^{\infty} h(\tau) X(t-\tau) \ d\tau$$

- In general, it is difficult to characterize *Y*(*t*) in terms of *X*(*t*)
- If *X*(*t*) is a wide-sense stationary random process, then *Y*(*t*) is also wide-sense stationary

$$\mu_{Y}(t) = \mu_{X} \int_{-\infty}^{\infty} h(\tau) d\tau$$

$$R_{Y}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1})h(\tau_{2})R_{X}(\tau - \tau_{1} + \tau_{2}) d\tau_{1} d\tau_{2}$$

Reference

• Chapter 1, *Communication Systems*, Simon Haykin, Fourth Edition, Wiley-India, 2001.