EE 325: Probability and Random Processes (Spring 2015)
Instructor: Saravanan Vijayakumaran
Indian Institute of Technology Bombay
Assignment 2: 25 points
Due Date: February 13, 2015

1 Problems

Let $F: \mathbb{R} \mapsto[0,1]$ be the distribution function a random variable X. Prove the following using the definitions given in the next section.

1. [5 points] $\lim _{x \rightarrow-\infty} F(x)=0$.
2. [5 points] $\lim _{x \rightarrow \infty} F(x)=1$.
3. [5 points] F is right continuous, $F(x+h) \rightarrow F(x)$ as $h \downarrow 0$.
4. [5 points] F is not always left continuous i.e. it is not always true that $F(x+h) \nrightarrow$ $F(x)$ as $h \uparrow 0$.
5. [5 points] $P(X=x)=F(x)-\lim _{y \uparrow x} F(y)$.

2 Definitions

Definition 1. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim _{x \rightarrow c} f(x)=L$ if for all $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $0<|x-c|<\delta$.

Remark. Note that the restriction $|x-c|>0$ means that the value of the function at c i.e. $f(c)$ has no role in detemining the convergence of a function at c. See http://en. wikipedia.org/wiki/Limit_of_a_function and http://en.wikibooks.org/wiki/Real_ Analysis/Limits for a more detailed explanation and examples.

Definition 2. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim _{x \rightarrow c} f(x)=L$ if for all sequences $\left\{x_{n}: n \in \mathbb{N}\right\}$ with $x_{n} \neq c$ and $\lim _{n \rightarrow \infty} x_{n}=c$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Remarks. The following remarks apply to Definition 2.

- Definition 2 says that convergence of $\left\{f\left(x_{n}\right)\right\}$ for all sequences $\left\{x_{n}\right\}$ with $x_{n} \neq c$ is equivalent to convergence of $f(x)$ as defined in Definition 1.
- The $x_{n} \neq c$ restriction is to enforce the condition $\left|x_{n}-c\right|>0$.
- When we write $\lim _{n \rightarrow \infty} x_{n}=c$, we mean that for all $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that $\left|x_{n}-c\right|<\varepsilon$ for all $n \geq n_{0}$.
- When we write $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$, we mean that for all $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that $\left|f\left(x_{n}\right)-L\right|<\varepsilon$ for all $n \geq n_{0}$.

Definition 3. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$, we say that $\lim _{x \rightarrow \infty} f(x)=L$, if for all $\varepsilon>0$ there exists an $M \in \mathbb{R}$ such that $|f(x)-L|<\varepsilon$ whenever $x>M$.

Definition 4. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$, we say that $\lim _{x \rightarrow-\infty} f(x)=L$, if for all $\varepsilon>0$ there exists an $M \in \mathbb{R}$ such that $|f(x)-L|<\varepsilon$ whenever $x<M$.

Remarks. The following remarks apply to Definitions 3 and 4.

- We cannot use Definition 1 with $c= \pm \infty$ to get Definitions 3 and 4 because c is required to belong to \mathbb{R}.
- The following points are analogous to Definition 2.
- We say $\lim _{x \rightarrow \infty} f(x)=L$ if for all real sequences $\left\{x_{n}: n \in \mathbb{N}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=$ ∞ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
- We say $\lim _{x \rightarrow-\infty} f(x)=L$ if for all real sequences $\left\{x_{n}: n \in \mathbb{N}\right\}$ with $\lim _{n \rightarrow \infty} x_{n}=$ $-\infty$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
- We say $\lim _{n \rightarrow \infty} x_{n}=\infty$ if for every $M \in \mathbb{R}$ there exists an $n_{0} \in \mathbb{N}$ such that $x_{n} \geq M$ for all $n \geq n_{0}$.
- We say $\lim _{n \rightarrow \infty} x_{n}=-\infty$ if for every $M \in \mathbb{R}$ there exists an $n_{0} \in \mathbb{N}$ such that $x_{n} \leq M$ for all $n \geq n_{0}$.

Definition 5. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim _{x \downarrow c} f(x)=L$ if for all $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $c<x<c+\delta$.

Definition 6. Given a function $f: \mathbb{R} \mapsto \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim _{x \uparrow c} f(x)=L$ if for all $\varepsilon>0$ there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $c-\delta<x<c$.

Remarks. The following remarks apply to Definitions 5 and 6.

- See http://en.wikipedia.org/wiki/One-sided_limit for more details and an example.
- The "for all sequences" interpretation as in Definition 2 holds for Definitions 5 and 6 as well.

