Assignment 2: 25 points

1 Problems

Let $F : \mathbb{R} \mapsto [0, 1]$ be the distribution function a random variable X. Prove the following using the definitions given in the next section.

- 1. [5 points] $\lim_{x \to -\infty} F(x) = 0.$
- 2. [5 points] $\lim_{x\to\infty} F(x) = 1$.
- 3. [5 points] F is right continuous, $F(x+h) \to F(x)$ as $h \downarrow 0$.
- 4. [5 points] F is not always left continuous i.e. it is not always true that $F(x+h) \not\rightarrow F(x)$ as $h \uparrow 0$.
- 5. [5 points] $P(X = x) = F(x) \lim_{y \uparrow x} F(y)$.

2 Definitions

Definition 1. Given a function $f : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim_{x\to c} f(x) = L$ if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

Remark. Note that the restriction |x - c| > 0 means that the value of the function at c i.e. f(c) has no role in detemining the convergence of a function at c. See http://en.wikipedia.org/wiki/Limit_of_a_function and http://en.wikibooks.org/wiki/Real_Analysis/Limits for a more detailed explanation and examples.

Definition 2. Given a function $f : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim_{x\to c} f(x) = L$ if for all sequences $\{x_n : n \in \mathbb{N}\}$ with $x_n \neq c$ and $\lim_{n\to\infty} x_n = c$ we have $\lim_{n\to\infty} f(x_n) = L$.

Remarks. The following remarks apply to Definition 2.

- Definition 2 says that convergence of $\{f(x_n)\}$ for all sequences $\{x_n\}$ with $x_n \neq c$ is equivalent to convergence of f(x) as defined in Definition 1.
- The $x_n \neq c$ restriction is to enforce the condition $|x_n c| > 0$.
- When we write $\lim_{n\to\infty} x_n = c$, we mean that for all $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that $|x_n c| < \varepsilon$ for all $n \ge n_0$.
- When we write $\lim_{n\to\infty} f(x_n) = L$, we mean that for all $\varepsilon > 0$ there exists an $n_0 \in \mathbb{N}$ such that $|f(x_n) L| < \varepsilon$ for all $n \ge n_0$.

Definition 3. Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that $\lim_{x\to\infty} f(x) = L$, if for all $\varepsilon > 0$ there exists an $M \in \mathbb{R}$ such that $|f(x) - L| < \varepsilon$ whenever x > M.

Definition 4. Given a function $f : \mathbb{R} \to \mathbb{R}$, we say that $\lim_{x\to\infty} f(x) = L$, if for all $\varepsilon > 0$ there exists an $M \in \mathbb{R}$ such that $|f(x) - L| < \varepsilon$ whenever x < M.

Remarks. The following remarks apply to Definitions 3 and 4.

• We cannot use Definition 1 with $c = \pm \infty$ to get Definitions 3 and 4 because c is required to belong to \mathbb{R} .

- The following points are analogous to Definition 2.
 - We say $\lim_{x\to\infty} f(x) = L$ if for all real sequences $\{x_n : n \in \mathbb{N}\}$ with $\lim_{n\to\infty} x_n = \infty$ we have $\lim_{n\to\infty} f(x_n) = L$.
 - We say $\lim_{x\to-\infty} f(x) = L$ if for all real sequences $\{x_n : n \in \mathbb{N}\}$ with $\lim_{n\to\infty} x_n = -\infty$ we have $\lim_{n\to\infty} f(x_n) = L$.
- We say $\lim_{n\to\infty} x_n = \infty$ if for every $M \in \mathbb{R}$ there exists an $n_0 \in \mathbb{N}$ such that $x_n \ge M$ for all $n \ge n_0$.
- We say $\lim_{n\to\infty} x_n = -\infty$ if for every $M \in \mathbb{R}$ there exists an $n_0 \in \mathbb{N}$ such that $x_n \leq M$ for all $n \geq n_0$.

Definition 5. Given a function $f : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim_{x \downarrow c} f(x) = L$ if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $c < x < c + \delta$.

Definition 6. Given a function $f : \mathbb{R} \to \mathbb{R}$ and $c \in \mathbb{R}$, we say that $\lim_{x \uparrow c} f(x) = L$ if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $c - \delta < x < c$.

Remarks. The following remarks apply to Definitions 5 and 6.

- See http://en.wikipedia.org/wiki/One-sided_limit for more details and an example.
- The "for all sequences" interpretation as in Definition 2 holds for Definitions 5 and 6 as well.