EE 325: Probability and Random Processes (Spring 2015)
 Instructor: Saravanan Vijayakumaran
 Indian Institute of Technology Bombay

Assignment 3: 25 points
Due Date: March 20, 2015

1. [5 points] Let Y and Z be independent random variables such that Z is equally likely to be 1 or -1 and Y is equally likely to be 1 or 2 . Let $X=Y Z$. Prove that X and Y are uncorrelated but not independent.
2. [5 points] Prove that if $E\left(X^{2}\right)=0$ then $P(X=0)=1$.
3. [5 points] Prove that $P(X=c)=1 \Longleftrightarrow \operatorname{var}(X)=0$.
4. [5 points] For random variables X and Y, the Cauchy-Schwarz inequality says that

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}
$$

Prove that equality holds if and only if $P(X=c Y)=1$ for some constant c. If the discriminant of a quadratic equation is zero, it has a repeated root. Let c be the root and use question 2 above.
5. [5 points] If $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent Gaussian random variables, show that $X_{1}+X_{2} \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$. Hints: What is the pdf of the sum of independent random variables? It is enough to show that $X_{1}+X_{2}-\mu_{1}-\mu_{2} \sim$ $\mathcal{N}\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

