Endsemester Exam : 40 points

- 1. (4 points) A fair coin is tossed 4N times. Assume that the tosses are independent. Using Markov and Chebyshev's inequalities (separately), calculate upper bounds on the probability of the event that at least 3N heads occur in the 4N tosses. Which upper bound is tighter?
- 2. (4 points) Prove that if X is a Gaussian random variable, then aX + b is also a Gaussian random variable for $a, b \in \mathbb{R}, a \neq 0$. Your proof should hold even when a < 0.
- 3. (4 points) Consider the following binary hypothesis testing problem where the hypotheses are equally likely and $\lambda_1 > \lambda_2$.
 - $H_1 : X_i \sim \text{Poisson}(\lambda_1), \quad i = 1, 2, \dots, N$ $H_2 : X_i \sim \text{Poisson}(\lambda_2), \quad i = 1, 2, \dots, N$

Assume that X_i and X_j are independent for $i \neq j$. The probability mass function of a Poisson random variable Z with parameter γ is given by $P(Z = n) = \frac{\gamma^n}{n!} e^{-\gamma}$ for $n = 0, 1, 2, 3, \ldots$

- (a) Find the optimal decision rule which minimizes the decision error probability. Simplify it as much as possible.
- (b) Let $F(x; \gamma)$ be the cumulative distribution function of a Poisson random variable with parameter γ . Find the decision error probability of the optimal decision rule in terms of F, λ_1, λ_2 , and N. Hint: Sum of two independent Poisson random variables with parameters γ_1 and γ_2 is a Poisson random variable with parameter $\gamma_1 + \gamma_2$.
- 4. (4 points) Suppose we observe Y_i , i = 1, 2, ..., M such that

 $Y_i \sim U[\theta_1, \theta_2]$

where the Y_i 's are independent and θ_1, θ_2 are unknowns. Derive the maximum-likelihood estimators of θ_1 and θ_2 . *Hint: Imagine a 3D plot with* θ_2 *on the x-axis,* θ_1 *on the y-axis and the likelihood* $p_{\theta_1,\theta_2}(y_i)$ *on the z-axis. First find the region in the* $\theta_1\theta_2$ *plane where the joint likelihood* $p_{\theta_1,\theta_2}(y_1, y_2, \ldots, y_M)$ is non-zero and then identify where it reaches its maximum.

- 5. (4 points) A random variable S is generated by the following procedure:
 - Generate two independent uniform random variables V_1 and V_2 in the interval [-1, 1].
 - If $V_1^2 + V_2^2 > 1$, then go to step 1 and regenerate V_1 and V_2 .
 - If $V_1^2 + V_2^2 \le 1$, then set $S = V_1^2 + V_2^2$ and stop.

Show that S has a uniform distribution in the interval [0, 1]. *Hint: The above procedure was used in the Box-Muller method for generating Gaussian random variables.*

- 6. (4 points) In quiz 3, you saw that $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$ does not imply $X_n + Y_n \xrightarrow{D} X + Y$. Show that if $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} c$ where $c \in \mathbb{R}$ is a constant, then $X_n + Y_n \xrightarrow{D} X + c$. You can use any result stated in quiz 3 without proof. *Hint: Condition on the partition* $|Y_n - c| \leq \varepsilon$ and $|Y_n - c| > \varepsilon$.
- 7. (4 points) Let X_n for $n \in \mathbb{N}$ be a sequence of independent but **not identically distributed** random variables having distribution

$$X_n \sim \begin{cases} U[0,2] & \text{ if } n \text{ is odd,} \\ U[2,4] & \text{ if } n \text{ is even} \end{cases}$$

where U[a, b] represents the uniform distribution in the interval [a, b]. Let $S_n = X_1 + X_2 + \cdots + X_n$. Show that $\frac{S_n}{n}$ converges in probability to a constant. You have to specify the constant explicitly. You can use any result stated in quiz 3 without proof.

- 8. (4 points) Let X_n for $n \in \mathbb{Z}$ be a random process consisting of independent and identically distributed random variables. Show that X_n is a strict-sense stationary random process.
- 9. (4 points) Let X_n for $n \in \mathbb{Z}$ be a wide-sense stationary random process with zero mean function and autocorrelation function given by

$$R_X[k] = \begin{cases} 1 & \text{if } k = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Let $Y_n = \frac{X_{n-1} + X_n + X_{n+1}}{3}$ be a filtered version of X_n . Calculate the autocorrelation function of Y_n .

10. (4 points) Two random vectors $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}$ and $\mathbf{Y} = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_m \end{bmatrix}$ are independent if their joint probability density or mass function is a product of the marginal density or mass functions i.e. $p(\mathbf{X}, \mathbf{Y}) = p(\mathbf{X})p(\mathbf{Y})$.

Two random processes X(t) and Y(t) are independent if any two vectors of time samples are independent i.e. $[X(t_1) \ X(t_2) \ \cdots \ X(t_n)]$ and $[Y(\tau_1) \ Y(\tau_2) \ \cdots \ Y(\tau_m)]$ are independent vectors as per the previous definition for any $n, m \in \mathbb{N}$ and any $t_1, t_2, \ldots, t_n, \tau_1, \tau_2, \ldots, \tau_m \in \mathbb{R}$.

Suppose X(t) and Y(t) are independent wide-sense stationary random processes with mean functions equal to μ_X and μ_Y respectively. Let their autocorrelation functions be $R_X(\tau)$ and $R_Y(\tau)$ respectively.

(a) Show that Z(t) = X(t) + Y(t) is a wide-sense stationary random process.

which depends only on τ . Hence Z(t) is a wide-sense stationary random process.

(b) Show that W(t) = X(t)Y(t) is a wide-sense stationary random process.