1. (4 points) A fair coin is tossed $4 N$ times. Assume that the tosses are independent. Using Markov and Chebyshev's inequalities (separately), calculate upper bounds on the probability of the event that at least $3 N$ heads occur in the $4 N$ tosses. Which upper bound is tighter?
2. (4 points) Prove that if X is a Gaussian random variable, then $a X+b$ is also a Gaussian random variable for $a, b \in \mathbb{R}, a \neq 0$. Your proof should hold even when $a<0$.
3. (4 points) Consider the following binary hypothesis testing problem where the hypotheses are equally likely and $\lambda_{1}>\lambda_{2}$.

$$
\begin{aligned}
& H_{1}: X_{i} \sim \operatorname{Poisson}\left(\lambda_{1}\right), \quad i=1,2, \ldots, N \\
& H_{2}: \quad X_{i} \sim \operatorname{Poisson}\left(\lambda_{2}\right), \quad i=1,2, \ldots, N
\end{aligned}
$$

Assume that X_{i} and X_{j} are independent for $i \neq j$. The probability mass function of a Poisson random variable Z with parameter γ is given by $P(Z=n)=\frac{\gamma^{n}}{n!} e^{-\gamma}$ for $n=0,1,2,3, \ldots$.
(a) Find the optimal decision rule which minimizes the decision error probability. Simplify it as much as possible.
(b) Let $F(x ; \gamma)$ be the cumulative distribution function of a Poisson random variable with parameter γ. Find the decision error probability of the optimal decision rule in terms of $F, \lambda_{1}, \lambda_{2}$, and N. Hint: Sum of two independent Poisson random variables with parameters γ_{1} and γ_{2} is a Poisson random variable with parameter $\gamma_{1}+\gamma_{2}$.
4. (4 points) Suppose we observe $Y_{i}, i=1,2, \ldots, M$ such that

$$
Y_{i} \sim U\left[\theta_{1}, \theta_{2}\right]
$$

where the Y_{i} 's are independent and θ_{1}, θ_{2} are unknowns. Derive the maximum-likelihood estimators of θ_{1} and θ_{2}. Hint: Imagine a $3 D$ plot with θ_{2} on the x-axis, θ_{1} on the y-axis and the likelihood $p_{\theta_{1}, \theta_{2}}\left(y_{i}\right)$ on the z-axis. First find the region in the $\theta_{1} \theta_{2}$ plane where the joint likelihood $p_{\theta_{1}, \theta_{2}}\left(y_{1}, y_{2}, \ldots, y_{M}\right)$ is non-zero and then identify where it reaches its maximum.
5. (4 points) A random variable S is generated by the following procedure:

- Generate two independent uniform random variables V_{1} and V_{2} in the interval $[-1,1]$.
- If $V_{1}^{2}+V_{2}^{2}>1$, then go to step 1 and regenerate V_{1} and V_{2}.
- If $V_{1}^{2}+V_{2}^{2} \leq 1$, then set $S=V_{1}^{2}+V_{2}^{2}$ and stop.

Show that S has a uniform distribution in the interval $[0,1]$. Hint: The above procedure was used in the Box-Muller method for generating Gaussian random variables.
6. (4 points) In quiz 3, you saw that $X_{n} \xrightarrow{D} X$ and $Y_{n} \xrightarrow{D} Y$ does not imply $X_{n}+Y_{n} \xrightarrow{D} X+Y$. Show that if $X_{n} \xrightarrow{D} X$ and $Y_{n} \xrightarrow{D} c$ where $c \in \mathbb{R}$ is a constant, then $X_{n}+Y_{n} \xrightarrow{D} X+c$. You can use any result stated in quiz 3 without proof. Hint: Condition on the partition $\left|Y_{n}-c\right| \leq \varepsilon$ and $\left|Y_{n}-c\right|>\varepsilon$.
7. (4 points) Let X_{n} for $n \in \mathbb{N}$ be a sequence of independent but not identically distributed random variables having distribution

$$
X_{n} \sim \begin{cases}U[0,2] & \text { if } n \text { is odd } \\ U[2,4] & \text { if } n \text { is even }\end{cases}
$$

where $U[a, b]$ represents the uniform distribution in the interval $[a, b]$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Show that $\frac{S_{n}}{n}$ converges in probability to a constant. You have to specify the constant explicitly. You can use any result stated in quiz 3 without proof.
8. (4 points) Let X_{n} for $n \in \mathbb{Z}$ be a random process consisting of independent and identically distributed random variables. Show that X_{n} is a strict-sense stationary random process.
9. (4 points) Let X_{n} for $n \in \mathbb{Z}$ be a wide-sense stationary random process with zero mean function and autocorrelation function given by

$$
R_{X}[k]=\left\{\begin{array}{cc}
1 & \text { if } k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $Y_{n}=\frac{X_{n-1}+X_{n}+X_{n+1}}{3}$ be a filtered version of X_{n}. Calculate the autocorrelation function of Y_{n}.
10. (4 points) Two random vectors $\mathbf{X}=\left[\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{n}\end{array}\right]$ and $\mathbf{Y}=\left[\begin{array}{llll}Y_{1} & Y_{2} & \cdots & Y_{m}\end{array}\right]$ are independent if their joint probability density or mass function is a product of the marginal density or mass functions i.e. $p(\mathbf{X}, \mathbf{Y})=p(\mathbf{X}) p(\mathbf{Y})$.
Two random processes $X(t)$ and $Y(t)$ are independent if any two vectors of time samples are independent i.e. $\left[\begin{array}{llll}X\left(t_{1}\right) & X\left(t_{2}\right) & \cdots & X\left(t_{n}\right)\end{array}\right]$ and $\left[\begin{array}{llll}Y\left(\tau_{1}\right) & Y\left(\tau_{2}\right) & \cdots & Y\left(\tau_{m}\right)\end{array}\right]$ are independent vectors as per the previous definition for any $n, m \in \mathbb{N}$ and any $t_{1}, t_{2}, \ldots, t_{n}, \tau_{1}, \tau_{2}, \ldots, \tau_{m} \in \mathbb{R}$.
Suppose $X(t)$ and $Y(t)$ are independent wide-sense stationary random processes with mean functions equal to μ_{X} and μ_{Y} respectively. Let their autocorrelation functions be $R_{X}(\tau)$ and $R_{Y}(\tau)$ respectively.
(a) Show that $Z(t)=X(t)+Y(t)$ is a wide-sense stationary random process. which depends only on τ. Hence $Z(t)$ is a wide-sense stationary random process.
(b) Show that $W(t)=X(t) Y(t)$ is a wide-sense stationary random process.

