Quiz 2:30 points

1. (6 points) The coefficient of correlation $\rho(X, Y)$ between random variables X and Y is defined as

$$\rho(X,Y) = \frac{E(XY) - E(X)E(Y)}{\sigma(X)\sigma(Y)}$$

where $\sigma(X)$ and $\sigma(Y)$ are the standard deviations of X and Y respectively. Show that $\rho(X, Y)$ always lies in the interval [-1, 1].

2. (6 points) Consider the following ternary hypothesis testing problem where the hypotheses are equally likely.

$$\begin{array}{rcl} H_1 & : & Y \sim \mathcal{N}(-\mu, \sigma^2) \\ H_2 & : & Y \sim \mathcal{N}(0, \sigma^2) \\ H_3 & : & Y \sim \mathcal{N}(\mu, \sigma^2) \end{array}$$

Here Y is the observation and $\mathcal{N}(\mu, \sigma^2)$ denotes the Gaussian distribution with mean μ and variance σ^2 .

- (a) Find the optimal decision rule which minimizes the decision error probability. Simplify it as much as possible.
- (b) Find the decision error probability of the optimal decision rule in terms of the Q function.
- 3. (6 points) Consider the following binary hypothesis testing problem where hypothesis H_0 is true with probability $\frac{1}{3}$ and hypothesis H_1 is true with probability $\frac{2}{3}$.

$$H_0$$
 : $Y \sim U[0,1]$
 H_1 : $Y \sim U[0.5, 2.5]$

Here Y is the observation and U[a, b] denotes the uniform distribution in the interval [a, b].

- (a) Find the optimal decision rule which minimizes the decision error probability. Simplify it as much as possible.
- (b) Find the decision error probability of the optimal decision rule.
- 4. (6 points) Suppose observations Y_i , i = 1, 2, ..., N are Rayleigh distributed with parameter σ^2 . A Rayleigh distributed random variable with parameter $\sigma^2 > 0$ has probability density function given by

$$p(y) = \frac{y}{\sigma^2} e^{-y^2/2\sigma^2} \text{ for } y \ge 0.$$

The mean and variance of a Rayleigh distributed random variable are given by $\sigma \sqrt{\frac{\pi}{2}}$ and $\frac{4-\pi}{2}\sigma^2$ respectively. Assume that the Y_i 's are independent.

- (a) Derive the maximum likelihood estimator for σ^2 .
- (b) Show that the expected value of the maximum likelihood estimate is σ^2 .
- 5. (6 points) Suppose observations X_i and Y_i (i = 1, ..., N) are Poisson distributed as follows where $\lambda > 0$ is an unknown parameter.

$$X_i \sim \text{Poisson}(\lambda), \quad i = 1, 2, \dots, N$$

 $Y_i \sim \text{Poisson}(2\lambda), \quad i = 1, 2, \dots, N$

The probability mass function of a Poisson random variable Z with parameter γ i.e. $Z \sim \text{Poisson}(\gamma)$ is given by $P(Z = n) = \frac{\gamma^n}{n!} e^{-\gamma}$ for $n = 0, 1, 2, 3, \ldots$ Assume that X_i and X_j are independent for $i \neq j$. Assume that Y_i and Y_j are independent for $i \neq j$. Assume that X_i and Y_j are independent for $i \neq j$.

- (a) Derive the maximum likelihood estimator for λ .
- (b) Find the mean and variance of the maximum likelihood estimate.