- 1. (6 points) Consider a biased coin which shows heads with probability p when tossed. Suppose the coin is tossed until a heads appears. Let X be the number of tosses in the experiment (including the last toss where the heads appears). Given p, describe a procedure to generate the random variable X. You can assume that the tosses are independent.
- 2. (6 points) Let X_n for $n = 1, 2, 3, \ldots$, be a sequence of random variables. Show that $X_n \xrightarrow{D} c$ implies $X_n \xrightarrow{P} c$ where c is a constant.
- 3. (6 points) State and prove the weak law of large numbers. You can use the result in question 2.
- 4. (6 points) State and prove the central limit theorem.
- 5. (6 points) Let X_n and Y_n for n = 1, 2, 3, ..., be sequences of random variables.
 - (a) Suppose $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$. Prove that $X_n + Y_n \xrightarrow{P} X + Y$. In terms of the sample points, the above statement is

$$\left\{\omega \in \Omega \left| |X_n(\omega) + Y_n(\omega) - X(\omega) - Y(\omega)| > \varepsilon \right\} \subseteq \left\{\omega \in \Omega \left| |X_n(\omega) - X(\omega)| > \frac{\varepsilon}{2} \right\} \bigcup \left\{\omega \in \Omega \left| |Y_n(\omega) - Y(\omega)| > \frac{\varepsilon}{2} \right\}.$$

Suppose this statement is not true. Then there exists an sample point $\omega_0 \in \Omega$ such that it belongs to the set on the left hand side of the set inclusion but not to the union on the right hand side. If the ω_0 does not belong to the union on the right hand side, then $|X_n(\omega_0) - X(\omega_0)| \leq \frac{\varepsilon}{2}$ and $|Y_n(\omega_0) - Y(\omega_0)| \leq \frac{\varepsilon}{2}$. This implies

$$|X_n(\omega_0) - X(\omega_0)| + |Y_n(\omega_0) - Y(\omega_0)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This is a contradiction since ω_0 belongs to the left hand side which implies

$$\varepsilon < |X_n(\omega_0) + Y_n(\omega_0) - X(\omega_0) - Y(\omega_0)| \le |X_n(\omega_0) - X(\omega_0)| + |Y_n(\omega_0) - Y(\omega_0)| \le \varepsilon.$$

Now that we have proved that $\{|X_n + Y_n - X - Y| > \varepsilon\} \subseteq \{|X_n - X| > \frac{\varepsilon}{2}\} \cup \{|Y_n - Y| > \frac{\varepsilon}{2}\}$, we can apply the union bound to get

$$\Pr\left\{|X_n + Y_n - X - Y| > \varepsilon\right\} \le \Pr\left\{|X_n - X| > \frac{\varepsilon}{2}\right\} + \Pr\left\{|Y_n - Y| > \frac{\varepsilon}{2}\right\}.$$

Since $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, the right hand side in the union bound goes to zero as $n \to \infty$. This proves that $X_n + Y_n \xrightarrow{P} X + Y$.

(b) Give a counterexample to show that $X_n \xrightarrow{D} X$ and $Y_n \xrightarrow{D} Y$ does not imply $X_n + Y_n \xrightarrow{D} X + Y$.