Convergence of Random Variables

Saravanan Vijayakumaran
sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

April 8, 2015

Motivation

Theorem (Weak Law of Large Numbers)

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\frac{S_{n}}{n} \xrightarrow{P} \mu \quad \text { as } n \rightarrow \infty
$$

Theorem (Central Limit Theorem)

Let X_{1}, X_{2}, \ldots be a sequence of independent identically distributed random variables with finite means μ and finite non-zero variance σ^{2}. Their partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfy

$$
\sqrt{n}\left(\frac{S_{n}}{n}-\mu\right) \xrightarrow{D} \mathcal{N}\left(0, \sigma^{2}\right) \quad \text { as } n \rightarrow \infty
$$

Modes of Convergence

- A sequence of real numbers $\left\{x_{n}: n=1,2, \ldots\right\}$ is said to converge to a limit x if for all $\varepsilon>0$ there exists an $m_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n}-x\right|<\varepsilon$ for all $n \geq m_{\varepsilon}$.
- We want to define convergence of random variables but they are functions from Ω to \mathbb{R}
- The solution
- Derive real number sequences from sequences of random variables
- Define convergence of the latter in terms of the former
- Four ways of defining convergence for random variables
- Convergence almost surely
- Convergence in r th mean
- Convergence in probability
- Convergence in distribution

Convergence Almost Surely

- Let X, X_{1}, X_{2}, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- For each $\omega \in \Omega, X(\omega)$ and $X_{n}(\omega)$ are reals
- $X_{n} \rightarrow X$ almost surely if $\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega)\right.$ as $\left.n \rightarrow \infty\right\}$ is an event whose probability is 1
- " $X_{n} \rightarrow X$ almost surely" is abbreviated as $X_{n} \xrightarrow{\text { a.s. }} X$

Example

- Let $\Omega=[0,1]$ and P be the uniform distribution on Ω
- $P(\omega \in[a, b])=b-a$ for $0 \leq a \leq b \leq 1$
- Let X_{n} be defined as

$$
X_{n}(\omega)= \begin{cases}n, & \omega \in\left[0, \frac{1}{n}\right) \\ 0, & \omega \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

- Let $X(\omega)=0$ for all $\omega \in[0,1]$
- $X_{n} \xrightarrow{\text { a.s. }} X$

Convergence in r th Mean

- Let X, X_{1}, X_{2}, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- Suppose $E\left[\left|X^{r}\right|\right]<\infty$ and $E\left[\left|X_{n}^{r}\right|\right]<\infty$ for all n
- $X_{n} \rightarrow X$ in r th mean if

$$
E\left(\left|X_{n}-X\right|^{r}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

where $r \geq 1$

- " $X_{n} \rightarrow X$ in r th mean" is abbreviated as $X_{n} \xrightarrow{r} X$
- For $r=1, X_{n} \xrightarrow{1} X$ is written as " $X_{n} \rightarrow X$ in mean"
- For $r=2, X_{n} \xrightarrow{2} X$ is written as " $X_{n} \rightarrow X$ in mean square" or $X_{n} \xrightarrow{\text { m.s. }} X$

Example

- Let $\Omega=[0,1]$ and P be the uniform distribution on Ω
- Let X_{n} be defined as

$$
X_{n}(\omega)= \begin{cases}n, & \omega \in\left[0, \frac{1}{n}\right) \\ 0, & \omega \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

- Let $X(\omega)=0$ for all $\omega \in[0,1]$
- $E\left[\left|X_{n}\right|\right]=1$ and so X_{n} does not converge in mean to X

Convergence in Probability

- Let X, X_{1}, X_{2}, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- $X_{n} \rightarrow X$ in probability if

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \rightarrow 0 \text { as } n \rightarrow \infty \text { for all } \epsilon>0
$$

- " $X_{n} \rightarrow X$ in probability" is abbreviated as $X_{n} \xrightarrow{P} X$

Example

- Let $\Omega=[0,1]$ and P be the uniform distribution on Ω
- Let X_{n} be defined as

$$
X_{n}(\omega)= \begin{cases}n, & \omega \in\left[0, \frac{1}{n}\right) \\ 0, & \omega \in\left[\frac{1}{n}, 1\right]\end{cases}
$$

- Let $X(\omega)=0$ for all $\omega \in[0,1]$
- For $\varepsilon>0, P\left[\left|X_{n}-X\right|>\varepsilon\right]=P\left[\left|X_{n}\right|>\varepsilon\right] \leq P\left[X_{n}=n\right]=\frac{1}{n} \rightarrow 0$
- $X_{n} \xrightarrow{P} X$

Convergence in Distribution

- Let X, X_{1}, X_{2}, \ldots be random variables on a probability space (Ω, \mathcal{F}, P)
- $X_{n} \rightarrow X$ in distribution if

$$
P\left(X_{n} \leq x\right) \rightarrow P(X \leq x) \text { as } n \rightarrow \infty
$$

for all points x where $F_{X}(x)=P(X \leq x)$ is continuous

- " $X_{n} \rightarrow X$ in distribution" is abbreviated as $X_{n} \xrightarrow{D} X$
- Convergence in distribution is also termed weak convergence

Example

Let X be a Bernoulli RV taking values 0 and 1 with equal probability $\frac{1}{2}$.
Let $X_{1}, X_{2}, X_{3}, \ldots$ be identical random variables given by $X_{n}=X$ for all n.
The X_{n} 's are not independent but $X_{n} \xrightarrow{D} X$.
Let $Y=1-X$. Then $X_{n} \xrightarrow{D} Y$.
But $\left|X_{n}-Y\right|=1$ and the X_{n} 's do not converge to Y in any other mode.

Relations between Modes of Convergence
Theorem

$$
\begin{gathered}
\left(X_{n} \xrightarrow{\text { a.s. }} X\right) \\
\forall \\
\underset{\pi}{ }\left(X_{n} \xrightarrow{P} X\right) \Rightarrow\left(X_{n} \xrightarrow{D} X\right) \\
\left(X_{n} X\right)
\end{gathered}
$$

for any $r \geq 1$.

Convergence in Probability Implies Convergence in Distribution

- Suppose $X_{n} \xrightarrow{P} X$
- Let $F_{n}(x)=P\left(X_{n} \leq x\right)$ and $F(x)=P(X \leq x)$
- If $\varepsilon>0$,

$$
\begin{aligned}
F_{n}(x) & =P\left(X_{n} \leq x\right) \\
& =P\left(X_{n} \leq x, X \leq x+\varepsilon\right)+P\left(X_{n} \leq x, X>x+\varepsilon\right) \\
& \leq F(x+\varepsilon)+P\left(\left|X_{n}-X\right|>\varepsilon\right) \\
F(x-\varepsilon) & =P(X \leq x-\varepsilon) \\
& =P\left(X \leq x-\varepsilon, X_{n} \leq x\right)+P\left(X \leq x-\varepsilon, X_{n}>x\right) \\
& \leq F_{n}(x)+P\left(\left|X_{n}-X\right|>\varepsilon\right)
\end{aligned}
$$

- Combining the above inequalities we have

$$
F(X-\varepsilon)-P\left(\left|X_{n}-X\right|>\varepsilon\right) \leq F_{n}(x) \leq F(x+\varepsilon)+P\left(\left|X_{n}-X\right|>\varepsilon\right)
$$

- If F is continuous at $x, F(x-\varepsilon) \rightarrow F(x)$ and $F(x+\varepsilon) \rightarrow F(x)$ as $\varepsilon \downarrow 0$
- Since $X_{n} \xrightarrow{P} X, P\left(\left|X_{n}-X\right|>\varepsilon\right) \rightarrow 0$ as $n \rightarrow \infty$

Convergence in r th Mean Implies Convergence in Probability

- If $r>s \geq 1$ and $X_{n} \xrightarrow{r} X$ then $X_{n} \xrightarrow{s} X$
- Lyapunov's inequality: If $r>s>0$, then $\left(E\left[|Y|^{s}\right]\right)^{\frac{1}{s}} \leq\left(E\left[|Y|^{r}\right]\right)^{\frac{1}{r}}$
- If $X_{n} \xrightarrow{r} X$, then $E\left[\left|X_{n}-X\right|^{r}\right] \rightarrow 0$ and

$$
\left(E\left[\left|X_{n}-X\right|^{s}\right]\right)^{\frac{1}{s}} \leq\left(E\left[\left|X_{n}-X\right|^{r}\right]\right)^{\frac{1}{r}}
$$

- If $X_{n} \xrightarrow{1} X$ then $X_{n} \xrightarrow{P} X$
- By Markov's inequality, we have

$$
P\left(\left|X_{n}-X\right|>\varepsilon\right) \leq \frac{E\left(\left|X_{n}-X\right|\right)}{\varepsilon}
$$

for all $\varepsilon>0$

Convergence Almost Surely Implies Convergence in Probability

- Let $A_{n}(\varepsilon)=\left\{\left|X_{n}-X\right|>\varepsilon\right\}$ and $B_{m}(\varepsilon)=\bigcup_{n \geq m} A_{n}(\varepsilon)$
- $X_{n} \xrightarrow{\text { a.s. }} X$ if and only if $P\left(B_{m}(\varepsilon)\right) \rightarrow 0$ as $m \rightarrow \infty$, for all $\varepsilon>0$
- Let

$$
\begin{aligned}
C & =\left\{\omega \in \Omega: X_{n}(\omega) \rightarrow X(\omega) \text { as } n \rightarrow \infty\right\} \\
A(\varepsilon) & =\left\{\omega \in \Omega: \omega \in A_{n}(\varepsilon) \text { for infinitely many values of } n\right\} \\
& =\bigcap_{m} \bigcup_{n=m}^{\infty} A_{n}(\varepsilon)
\end{aligned}
$$

- $X_{n}(\omega) \rightarrow X(\omega)$ if and only if $\omega \notin A(\varepsilon)$ for all $\varepsilon>0$
- $P(C)=1$ if and only if $P(A(\varepsilon))=0$ for all $\varepsilon>0$
- $B_{m}(\varepsilon)$ is a decreasing sequence of events with limit $A(\varepsilon)$
- $P(A(\varepsilon))=0$ if and only if $P\left(B_{m}(\varepsilon)\right) \rightarrow 0$ as $m \rightarrow \infty$
- Since $A_{n}(\varepsilon) \subseteq B_{n}(\varepsilon)$, we have $P\left(\left|X_{n}-X\right|>\varepsilon\right)=P\left(A_{n}(\varepsilon)\right) \rightarrow 0$ whenever $P\left(B_{n}(\varepsilon)\right) \rightarrow 0$
- Thus $X_{n} \xrightarrow{\text { a.s. }} X \Longrightarrow X_{n} \xrightarrow{P} X$

Some Converses

- If $X_{n} \xrightarrow{D} c$, where c is a constant, then $X_{n} \xrightarrow{P} c$

$$
P\left(\left|X_{n}-c\right|>\varepsilon\right)=P\left(X_{n}<c-\varepsilon\right)+P\left(X_{n}>c+\varepsilon\right) \rightarrow 0 \text { if } X_{n} \xrightarrow{D} c
$$

- If $P_{n}(\varepsilon)=P\left(\left|X_{n}-X\right|>\varepsilon\right)$ satisfies $\sum_{n} P_{n}(\varepsilon)<\infty$ for all $\varepsilon>0$, then $X_{n} \xrightarrow{\text { a.s. }} X$
- Let $A_{n}(\varepsilon)=\left\{\left|X_{n}-X\right|>\varepsilon\right\}$ and $B_{m}(\varepsilon)=\bigcup_{n \geq m} A_{n}(\varepsilon)$

$$
P\left(B_{m}(\varepsilon)\right) \leq \sum_{n=m}^{\infty} P\left(A_{n}(\varepsilon)\right)=\sum_{n=m}^{\infty} P_{n}(\varepsilon) \rightarrow 0 \text { as } m \rightarrow \infty
$$

- $X_{n} \xrightarrow{\text { a.s. }} X$ if and only $P\left(B_{m}(\varepsilon)\right) \rightarrow 0$ as $m \rightarrow \infty$, for all $\varepsilon>0$

Reference

- Chapter 7, Probability and Random Processes, Grimmett and Stirzaker, Third Edition, 2001.

