Expectation of Random Variables

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

February 13, 2015

Expectation of Discrete Random Variables

Definition

The expectation of a discrete random variable X with probability mass function f is defined to be

$$
E(X)=\sum_{x: f(x)>0} x f(x)
$$

whenever this sum is absolutely convergent. The expectation is also called the mean value or the expected value of the random variable.

Example

- Bernoulli random variable

$$
\begin{array}{ll}
\Omega=\{0,1\} & f(x)= \begin{cases}p & \text { if } x=1 \\
1-p & \text { if } x=0\end{cases}
\end{array}
$$

where $0 \leq p \leq 1$

$$
E(X)=1 \cdot p+0 \cdot(1-p)=p
$$

More Examples

- The probability mass function of a binomial random variable X with parameters n and p is

$$
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { if } 0 \leq k \leq n
$$

Its expected value is given by

$$
E(X)=\sum_{k=0}^{n} k P[X=k]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n p
$$

- The probability mass function of a Poisson random variable with parameter λ is given by

$$
P[X=k]=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad k=0,1,2, \ldots
$$

Its expected value is given by

$$
E(X)=\sum_{k=0}^{\infty} k P[X=k]=\sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda}=\lambda
$$

Why do we need absolute convergence?

- A discrete random variable can take a countable number of values
- The definition of expectation involves a weighted sum of these values
- The order of the terms in the infinite sum is not specified in the definition
- The order of the terms can affect the value of the infinite sum
- Consider the following series

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots
$$

Its sums to a value less than $\frac{5}{6}$

- Consider a rearrangement of the above series where two positive terms are followed by one negative term

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots
$$

Since

$$
\frac{1}{4 k-3}+\frac{1}{4 k-1}-\frac{1}{2 k}>0
$$

the rearranged series sums to a value greater than $\frac{5}{6}$

Why do we need absolute convergence?

- A series $\sum a_{i}$ is said to converge absolutely if the series $\sum\left|a_{i}\right|$ converges
- Theorem: If $\sum a_{i}$ is a series which converges absolutely, then every rearrangement of $\sum a_{i}$ converges, and they all converge to the same sum
- The previously considered series converges but does not converge absolutely

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\cdots
$$

- Considering only absolutely convergent sums makes the expectation independent of the order of summation

Expectations of Functions of Discrete RVs

- If X has pmf f and $g: \mathbb{R} \rightarrow \mathbb{R}$, then

$$
E(g(X))=\sum_{x} g(x) f(x)
$$

whenever this sum is absolutely convergent.

Example

- Suppose X takes values $-2,-1,1,3$ with probabilities $\frac{1}{4}, \frac{1}{8}, \frac{1}{4}, \frac{3}{8}$ respectively.
- Consider $Y=X^{2}$. It takes values $1,4,9$ with probabilities $\frac{3}{8}, \frac{1}{4}, \frac{3}{8}$ respectively.

$$
E(Y)=\sum_{y} y P(Y=y)=1 \cdot \frac{3}{8}+4 \cdot \frac{1}{4}+9 \cdot \frac{3}{8}=\frac{19}{4}
$$

Alternatively,

$$
E(Y)=E\left(X^{2}\right)=\sum_{x} x^{2} P(X=x)=4 \cdot \frac{1}{4}+1 \cdot \frac{1}{8}+1 \cdot \frac{1}{4}+9 \cdot \frac{3}{8}=\frac{19}{4}
$$

Expectation of Continuous Random Variables

Definition
The expectation of a continuous random variable with density function f is given by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

whenever this integral is finite.

Example (Uniform Random Variable)

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

Conditional Expectation

Definition

For discrete random variables, the conditional expectation of Y given $X=x$ is defined as

$$
E(Y \mid X=x)=\sum_{y} y f_{Y \mid X}(y \mid x)
$$

For continuous random variables, the conditional expectation of Y given X is given by

$$
E(Y \mid X=x)=\int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y
$$

The conditional expectation is a function of the conditioning random variable i.e. $\psi(X)=E(Y \mid X)$

Example

For the following joint probability mass function, calculate $E(Y)$ and $E(Y \mid X)$.

$Y \downarrow, X \rightarrow$	x_{1}	x_{2}	x_{3}
y_{1}	$\frac{1}{2}$	0	0
y_{2}	0	$\frac{1}{8}$	$\frac{1}{8}$
y_{3}	0	$\frac{1}{8}$	$\frac{1}{8}$

Law of Iterated Expectation

Theorem

The conditional expectation $E(Y \mid X)$ satisfies

$$
E[E(Y \mid X)]=E(Y)
$$

Example

A group of hens lay N eggs where N has a Poisson distribution with parameter λ. Each egg results in a healthy chick with probability p independently of the other eggs. Let K be the number of chicks. Find $E(K)$.

Some Properties of Expectation

- If $a, b \in \mathbb{R}$, then $E(a X+b Y)=a E(X)+b E(Y)$
- If X and Y are independent, $E(X Y)=E(X) E(Y)$
- X and Y are said to be uncorrelated if $E(X Y)=E(X) E(Y)$
- Independent random variables are uncorrelated but uncorrelated random variables need not be independent

Example

Y and Z are independent random variables such that Z is equally likely to be 1 or -1 and Y is equally likely to be 1 or 2.
Let $X=Y Z$. Then X and Y are uncorrelated but not independent.

Expectation via the Distribution Function

For a discrete random variable X taking values in $\{0,1,2, \ldots\}$, the expected value is given by

$$
E[X]=\sum_{i=1}^{\infty} P(X \geq i)
$$

Proof

$\sum_{i=1}^{\infty} P(X \geq i)=\sum_{i=1}^{\infty} \sum_{j=i}^{\infty} P(X=j)=\sum_{j=1}^{\infty} \sum_{i=1}^{j} P(X=j)=\sum_{j=1}^{\infty} j P(X=j)=E[X]$

Example

Let X_{1}, \ldots, X_{m} be m independent discrete random variables taking only non-negative integer values. Let all of them have the same probability mass function $P(X=n)=p_{n}$ for $n \geq 0$. What is the expected value of the minimum of X_{1}, \ldots, X_{m} ?

Expectation via the Distribution Function

For a continuous random variable X taking only non-negative values, the expected value is given by

$$
E[X]=\int_{0}^{\infty} P(X \geq x) d x
$$

Proof

$$
\begin{aligned}
\int_{0}^{\infty} P(X \geq x) d x & =\int_{0}^{\infty} \int_{x}^{\infty} f_{X}(t) d t d x=\int_{0}^{\infty} \int_{0}^{t} f_{X}(t) d x d t \\
& =\int_{0}^{\infty} t f_{X}(t) d t=E[X]
\end{aligned}
$$

Variance

- Quantifies the spread of a random variable
- Let the expectation of X be $m_{1}=E(X)$
- The variance of X is given by $\sigma^{2}=E\left[\left(X-m_{1}\right)^{2}\right]$
- The positive square root of the variance is called the standard deviation
- Examples
- Variance of a binomial random variable X with parameters n and p is

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{k=0}^{n}(k-n p)^{2} P[X=k]=\sum_{k=0}^{n} k^{2}\binom{n}{k} p^{k}(1-p)^{n-k}-n^{2} p^{2} \\
& =n p(1-p)
\end{aligned}
$$

- Variance of a uniform random variable X on $[a, b]$ is

$$
\operatorname{var}(X)=\int_{-\infty}^{\infty}\left[x-\frac{a+b}{2}\right]^{2} f_{U}(x) d x=\frac{(b-a)^{2}}{12}
$$

Properties of Variance

- $\operatorname{var}(X) \geq 0$
- $\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
- For $a, b \in \mathbb{R}, \operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$
- $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$ if and only if X and Y are uncorrelated

Probabilistic Inequalities

Markov’s Inequality

If X is a non-negative random variable and $a>0$, then

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

Proof

We first claim that if $X \geq Y$, then $E(X) \geq E(Y)$.
Let Y be a random variable such that

$$
Y= \begin{cases}a & \text { if } X \geq a \\ 0 & \text { if } X<a\end{cases}
$$

Then $X \geq Y$ and $E(X) \geq E(Y)=a P(X \geq a) \Longrightarrow P(X \geq a) \leq \frac{E(X)}{a}$.

Exercise

- Prove that if $E\left(X^{2}\right)=0$ then $P(X=0)=1$.

Chebyshev's Inequality

Let X be a random variable and $a>0$. Then $P(|X-E(X)| \geq a) \leq \frac{\operatorname{var}(X)}{a^{2}}$.
Proof
Let $Y=(X-E(X))^{2}$.

$$
P(|X-E(X)| \geq a)=P\left(Y \geq a^{2}\right) \leq \frac{E(Y)}{a^{2}}=\frac{\operatorname{var}(X)}{a^{2}} .
$$

Setting $a=k \sigma$ where $k>0$ and $\sigma=\sqrt{\operatorname{var}(X)}$, we get

$$
P(|X-E(X)| \geq k \sigma) \leq \frac{1}{k^{2}} .
$$

Exercises

- Suppose we have a coin with an unknown probability p of showing heads. We want to estimate p to within an accuracy of $\epsilon>0$. How can we do it?
- Prove that $P(X=c)=1 \Longleftrightarrow \operatorname{var}(X)=0$.

Cauchy-Schwarz Inequality

For random variables X and Y, we have

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}
$$

Equality holds if and only if $P(X=c Y)=1$ for some constant c.

Proof

For any real k, we have $E\left[(k X+Y)^{2}\right] \geq 0$. This implies

$$
k^{2} E\left(X^{2}\right)+2 k E(X Y)+E\left(Y^{2}\right) \geq 0
$$

for all k. The above quadratic must have a non-positive discriminant.

$$
[2 E(X Y)]^{2}-4 E\left(X^{2}\right) E\left(Y^{2}\right) \leq 0 .
$$

Questions?

