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Generating Random Variables

• Applications where random variables need to be generated

• Simulations
• Lotteries
• Computer Games

• General strategy for generating an arbitrary random variable

• Generate uniform random variables in the unit interval
• Transform the uniform random variables to obtain the desired

random variables
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Generating Uniform Random Variables

• X ∼ U [a, b] has density function

fX (x) =

{ 1
b−a for a ≤ x ≤ b
0 otherwise

• The distribution function is

FX (x) =


0 x < a

x−a
b−a a ≤ x ≤ b
1 x > b

• Y ∼ U [0, 1] has distribution function

FY (x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

• Given Y , can we generate X?

• (b − a)Y + a has the same distribution as U [a, b]
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Generating U [0,1]
• Computers can represent reals upto a finite precision

• Generate a random integer X from 0 to some positive integer m

• Generate the uniform random variable in [0, 1] as

U =
X
m

• The linear congruential method for generating integers from 0 to m

Xn+1 = (aXn + c) mod m, n ≥ 0

where m, a, c are integers called the modulus, multiplier and increment
respectively. X0 is called the starting value.

• For m = 10 and X0 = a = c = 7, the sequence generated is

7, 6, 9, 0, 7, 6, 9, 0, · · ·

• The linear congruential method is eventually periodic
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Maximal Period Linear Congruential Generators

Xn+1 = (aXn + c) mod m, n ≥ 0

Theorem
The linear congruential sequence has period m if and only if

• c is relatively prime to m

• b = a− 1 is a multiple of p, for every prime p dividing m

• b is a multiple of 4, if m is a multiple of 4.

Remarks
• Having maximal period is not a guarantee of randomness

• For a = c = 1, we have Xn+1 = (Xn + 1) mod m

• Additional tests are needed (see reference on last slide)
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Generating a Bernoulli Random Variable

• The probability mass function is given by

P[X = x ] =

{
p if x = 1
1− p if x = 0

where 0 ≤ p ≤ 1

• Generate a uniform random variable U ∼ U [0, 1]

• Generate the Bernoulli random variable by the following rule

X =

{
1 if U ≤ p
0 if U > p

• How can we generate a binomial random variable?
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The Inverse Transform Method

• Suppose we want to generate a random variable with distribution
function F . Assume F is one-to-one.

• Generate a uniform random variable U ∼ U [0, 1]

• X = F−1(U) has the distribution function F

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x)

Example (Generating Exponential RVs)
X is an exponential RV with parameter λ > 0 if it has distribution function

F (x) = 1− e−λx , x ≥ 0

How can it be generated?
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Generating Discrete Random Variables

• Suppose we want to generate a discrete random variable X with
distribution function F . F is usually not one-to-one.

• Let x1 ≤ x2 ≤ x3 ≤ · · · be the values taken by X

• Generate a uniform random variable U ∼ U [0, 1]

• Generate X according to the rule

X =

{
x1 if 0 ≤ U ≤ F (x1)
xk if F (xk−1) < U ≤ F (xk ) for k ≥ 2

Example (Generating Binomial RVs)
The probability mass function of a Binomial RV X with parameters n and p is

P[X = k ] =

(
n
k

)
pk (1− p)n−k if 0 ≤ k ≤ n

How can it be generated?
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Box-Muller Method for Generating Gaussian RVs

1. Generate two independent uniform RVs U1 and U2 between 0 and 1

2. Let V1 = 2U1 − 1 and V2 = 2U2 − 1

3. Let S = V 2
1 + V 2

2 .

4. If S ≥ 1, go to Step 1

5. If S < 1, let

X1 = V1

√
−2 ln S

S
, X2 = V2

√
−2 ln S

S
6. X1 and X2 are independent standard Gaussian random variables

Proof
• (V1,V2) represents a random point in the unit circle

• Let V1 = R cos Θ and V2 = R sin Θ

• Θ ∼ U [0, 2π] and R2 = S ∼ U [0, 1]. Θ and S are independent

• X1 =
√
−2 ln S cos Θ and X2 =

√
−2 ln S sin Θ

• X1,X2 also are in polar coordinates with radius R′ =
√
−2 ln S and

angle Θ
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Proof Continued

• The probability density function of R′ is fR(r) = re−r2/2

Pr
[
R′ ≤ r

]
= Pr

[√
−2 ln S ≤ r

]
= Pr

[
S ≥ e−r2/2

]
= 1− e−r2/2

• The joint probability distribution of X1 and X2 is given by

P(X1 ≤ x1,X2 ≤ x2) =

∫
{(r,θ)|r cos θ≤x1,r sin θ≤x2}

1
2π

e−
r2
2 r dr dθ

=
1

2π

∫
{x≤x1,y≤x2}

e−
x2+y2

2 dx dy

=
1√
2π

∫ x1

−∞
e−

x2
2 dx · 1√

2π

∫ x2

−∞
e−

y2
2 dy

• This proves that X1 and X2 are independent and have standard
Gaussian distribution
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Acceptance-Rejection Method

• Suppose we want to generate a random variable X having density f

• Suppose X is difficult to generate using the inversion method

• Suppose there is a random variable Y with density g which is easy to
generate

• For some c ∈ R, suppose f and g satisfy

f (y)

cg(y)
≤ 1 for all y .

• Generate a uniform random variable U ∼ U [0, 1]

• Generate the random variable Y

• If U ≤ f (Y )
cg(Y )

, set X = Y . Otherwise, generate another pair (U,Y ) and
keep trying until the inequality is satisfied

• To show that the method is correct, we have to show that

P
(

Y ≤ x
∣∣∣∣U ≤ f (Y )

cg(Y )

)
= F (x)

where F (x) =
∫ x
−∞ f (t) dt
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Example of Acceptance-Rejection Method

• Suppose we want to generate a random variable X with probability
density function

f (x) = 20x(1− x)3, 0 < x < 1

• We need a pdf g(x) such that f (x)
g(x) ≤ c for some c ∈ R

• Consider g(x) = 1 for 0 < x < 1

f (x)

g(x)
= 20x(1− x)3 ≤ 20 · 1

4
·
(

3
4

)3

=
135
64

• Let c = 135
64 =⇒ f (x)

cg(x) = 256
27 x(1− x)3

• X can now be generated as follows

1. Generate U ∼ U [0, 1] and Y ∼ U [0, 1]
2. If U ≤ 256

27 Y (1− Y )3, set X = Y
3. Otherwise, return to step 1
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