Properties of Probability Measures

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 16, 2015

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of a set Ω , a σ -field \mathcal{F} of subsets of Ω and a probability measure P on (Ω, \mathcal{F}) .

Definition

A probability measure on (Ω, \mathcal{F}) is a function $P : \mathcal{F} \rightarrow [0, 1]$ satisfying

- (a) $P(\Omega) = 1$
- (b) if $A_1, A_2, \ldots \in \mathcal{F}$ is a collection of disjoint members in \mathcal{F} , then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

Some Properties of Probability Measures

- *P*(*\phi*) = 0
- For a disjoint collection $A_1, A_2, \ldots A_n \in \mathcal{F}$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$

- $P(A^c) = 1 P(A)$
- Define $B \setminus A = B \cap A^c$. If $A \subseteq B$, then $P(B) = P(A) + P(B \setminus A) \ge P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- For any $n \in \mathbb{N}$

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) - \cdots + (-1)^{n+1} P(A_{1} \cap A_{2} \cap \cdots \cap A_{n})$$

P is a continuous set function

Theorem

Let A_1, A_2, \ldots be an increasing sequence of events, so that $A_1 \subseteq A_2 \subseteq \cdots$. Let A be their limit

$$A=\bigcup_{i=1}^{\infty}A_i=\lim_{i\to\infty}A_i.$$

Then $P(A) = \lim_{i \to \infty} P(A_i)$.

Proof.

The set A can be written as a disjoint union as follows

$$A = A_1 \bigcup (A_2 \setminus A_1) \bigcup (A_3 \setminus A_2) \bigcup (A_4 \setminus A_3) \cdots$$

By the countable additivity property of P, we have

$$P(A) = P(A_1) + \sum_{i=1}^{\infty} P(A_{i+1} \setminus A_i) = P(A_1) + \lim_{n \to \infty} \sum_{i=1}^{n} P(A_{i+1} \setminus A_i)$$

= $P(A_1) + \lim_{n \to \infty} \sum_{i=1}^{n} [P(A_{i+1}) - P(A_i)] = P(A_1) + \lim_{n \to \infty} [P(A_{n+1}) - P(A_1)]$
= $\lim_{n \to \infty} P(A_{n+1})$

P is a continuous set function

Theorem

Let B_1, B_2, \ldots be a decreasing sequence of events, so that $B_1 \supseteq B_2 \supseteq \cdots$. Let B be their limit

$$B=\bigcap_{i=1}^{\infty}B_i=\lim_{i\to\infty}B_i.$$

Then $P(B) = \lim_{i \to \infty} P(B_i)$.

Proof. Let $A_i = B_i^c$ and use the previous theorem.

Reading Assignment

- Sections 1.1, 1.2, 1.3 from *Probability and Random Processes*, G. Grimmett and D. R. Stirzaker, 2001 (3rd Edition)
- Chapter 1 from *A First Look at Rigorous Probability Theory*, Jeffrey S. Rosenthal, 2006 (2nd Edition)