Why is the Probability Space a Triple?

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

January 10, 2015

Probability Space

Definition

A probability space is a triple (Ω, \mathcal{F}, P) consisting of

- a set Ω,
- a σ-field \mathcal{F} of subsets of Ω and
- a probability measure P on (Ω, \mathcal{F}).

Remarks

- When Ω is finite or countable, \mathcal{F} can be 2^{Ω} (all subsets can be events)
- If this always holds, then Ω uniquely specifies \mathcal{F}
- Then the probability space would be an ordered pair (Ω, P)
- For uncountable Ω, it may be impossible to define P if $\mathcal{F}=2^{\Omega}$
- We will see an example but first we need the following definitions
- Countable and uncountable sets
- Equivalence relations

Countable and Uncountable Sets

One-to-One Functions

Definition (One-to-One function)

A function $f: A \rightarrow B$ is a one-to-one function if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \in A$.

Also called an injective function

Onto Functions

Definition (Onto function)

A function $f: A \rightarrow B$ is said to be an onto function if $f(A)=B$.

Also called a surjective function

One-to-One Correspondence

Definition (One-to-one correspondence)

A function $f: A \rightarrow B$ is said to be a one-to-one correspondence if it is a one-to-one and onto function from A to B.

Also called a bijective function

Countable Sets

Definition

Sets A and B are said to have the same cardinal number if there exists a one-to-one correspondence $f: A \rightarrow B$.

Definition (Countable Sets)

A set A is said to be countable if there exists a one-to-one correspondence between A and \mathbb{N}.

Examples

- \mathbb{N} is countable. Consider $f: \mathbb{N} \rightarrow \mathbb{N}$ defined as

$$
f(x)=x
$$

- \mathbb{Z} is countable. Consider $f: \mathbb{Z} \rightarrow \mathbb{N}$ defined as

$$
f(x)= \begin{cases}2 x+1 & \text { if } x \geq 0 \\ -2 x & \text { if } x<0\end{cases}
$$

More Examples of Countable Sets

- Consider the function $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ where $f(i, j)$ is equal to the number of pairs visited when (i, j) is visited
- $\mathbb{N} \times \mathbb{N}$ is countable
- The same argument applies to any $A \times B$ where A and B are countable
- $\mathbb{Z} \times \mathbb{N}$ is countable $\Longrightarrow \mathbb{Q}$ is countable

Reals are Uncountable

Definition (Uncountable Sets)

A set is said to be uncountable if it is neither finite nor countable.

Examples

- $[0,1)$ is uncountable
- \mathbb{R} is uncountable

Equivalence Relations

Binary Relations

Definition (Binary Relation)

Given a set A, a binary relation R is a subset of $A \times A$.

Examples

- $A=\{1,2,3,4\}, R=\{(1,1),(2,4)\}$
- $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b$ is an even integer $\}$
- $R=\left\{(X, Y) \in 2^{\mathbb{N}} \times 2^{\mathbb{N}} \mid\right.$ A bijection exists between X and $\left.Y\right\}$

If $(a, b) \in R$, we write $a \sim_{R} b$ or just $a \sim b$.

Equivalence Relations

Definition (Equivalence Relation)

A binary relation R on a set A is said to be an equivalence relation on A if for all $x, y, z \in A$ the following conditions hold

Reflexive $x \sim x$
Symmetric $x \sim y$ implies $y \sim x$
Transitive $x \sim y$ and $y \sim z$ imply $x \sim z$

Examples

- $A=\{1,2,3,4\}, R=\{(1,1),(2,2),(3,3),(4,4)\}$
- $R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x-y$ is an even integer $\}$
- $R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid x-y$ is a multiple of 5$\}$
- Let A be the set of current students in the institute. Are the following binary relations equivalence relations on A ?
- $x \sim y$ if x and y live in the same hostel
- $x \sim y$ if x and y have a course in common

Equivalence Classes

Definition (Equivalence Class)

Given an equivalence relation R on A and an element $x \in A$, the equivalence class of x is the set of all $y \in A$ such that $x \sim y$.

Examples

- $A=\{1,2,3,4\}, R=\{(1,1),(2,2),(3,3),(4,4)\}$

Equivalence class of 1 is $\{1\}$.

- $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b$ is an even integer $\}$

Equivalence class of 0 is the set of all even integers.
Equivalence class of 1 is the set of all odd integers.

- $R=\{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a-b$ is a multiple of 5$\}$. Equivalence classes?

Theorem
Given an equivalence relation, the collection of equivalence classes form a partition of A.

A Non-Measurable Set

Choosing a Random Point in the Unit Interval

- Let $\Omega=[0,1]$
- For $0 \leq a \leq b \leq 1$, we want

$$
P([a, b])=P((a, b])=P([a, b))=P((a, b))=b-a
$$

- We want P to be unaffected by shifting (with wrap-around)

$$
P([0,0.5])=P([0.25,0.75])=P([0.75,1] \cup[0,0.25])
$$

- In general, for each subset $A \subseteq[0,1]$ and $0 \leq r \leq 1$

$$
P(A \oplus r)=P(A)
$$

where

$$
A \oplus r=\{a+r \mid a \in A, a+r \leq 1\} \cup\{a+r-1 \mid a \in A, a+r>1\}
$$

- We want P to be countably additive

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

for disjoint subsets A_{1}, A_{2}, \ldots of $[0,1]$

- Can the definition of P be extended to all subsets of $[0,1]$?

Building the Contradiction

- Suppose P is defined for all subsets of $[0,1]$
- Define an equivalence relation on $[0,1]$ given by

$$
x \sim y \Longleftrightarrow x-y \text { is rational }
$$

- This relation partitions $[0,1]$ into disjoint equivalence classes
- Let H be a subset of $[0,1]$ consisting of exactly one element from each equivalence class. Let $0 \in H$; then $1 \notin H$.
- $[0,1)$ is contained in the union $\bigcup_{r \in[0,1) \cap \mathbb{Q}}(H \oplus r)$
- Since the sets $H \oplus r$ for $r \in[0,1) \cap \mathbb{Q}$ are disjoint, by countable additivity

$$
P([0,1))=\sum_{r \in[0,1) \cap Q} P(H \oplus r)
$$

- Shift invariance implies $P(H \oplus r)=P(H)$ which implies

$$
1=P([0,1))=\sum_{r \in[0,1) \cap Q} P(H)
$$

which is a contradiction

Consequences of the Contradiction

- P cannot be defined on all subsets of $[0,1]$
- But the subsets it is defined on have to form a σ-field
- The σ-field of subsets of $[0,1]$ on which P can be defined without contradiction are called the measurable subsets
- That is why probability spaces are triples

Questions?

