Assignment 1: 20 points

- 1. [5 points] Find two distinct inputs such that the corresponding SHA-256 hash function outputs coincide in the initial 28 bits.
- 2. [5 points] Show that the discrete logarithm problem can be solved in polynomial time in \mathbb{Z}_n , i.e. given a generator i of \mathbb{Z}_n and any $j \in \mathbb{Z}_n$ there is a polynomial-time algorithm to find $k \in \mathbb{Z}_n$ such that

$$\underbrace{i+i+\dots+i}_{k \text{ times}} = j.$$

Note that i is not necessarily equal to 1. *Hint: Extended Euclidean algorithm, multiplication, and addition in* \mathbb{Z}_n are polynomial-time algorithms.

- 3. [5 points] Suppose G is a cyclic group of order q with generator g. Let $x \in \mathbb{Z}_q$ and $h = g^x$. Show that (I, r, s) and (I', r', s') have the same distribution where
 - $k \leftarrow \mathbb{Z}_q, I = g^k, r \leftarrow \mathbb{Z}_q$, and $s = rx + k \mod q$
 - $r' \leftarrow \mathbb{Z}_q, s' \leftarrow \mathbb{Z}_q, I' = g^{s'} h^{-r'}$

Recall that the notation $a \leftarrow A$ implies that the element a is randomly picked from the set A.

4. [5 points] Enumerate all the points of the elliptic curve $Y^2 = X^3 + 9X + 5$ over \mathbb{F}_{13} . You are allowed to use the software package of your choice.