1. [5 points] Find two distinct inputs such that the corresponding SHA-256 hash function outputs coincide in the initial 28 bits.
2. [5 points] Show that the discrete logarithm problem can be solved in polynomial time in \mathbb{Z}_{n}, i.e. given a generator i of \mathbb{Z}_{n} and any $j \in \mathbb{Z}_{n}$ there is a polynomial-time algorithm to find $k \in \mathbb{Z}_{n}$ such that

$$
\underbrace{i+i+\cdots+i}_{k \text { times }}=j .
$$

Note that i is not necessarily equal to 1. Hint: Extended Euclidean algorithm, multiplication, and addition in \mathbb{Z}_{n} are polynomial-time algorithms.
3. [5 points] Suppose G is a cyclic group of order q with generator g. Let $x \in \mathbb{Z}_{q}$ and $h=g^{x}$. Show that (I, r, s) and $\left(I^{\prime}, r^{\prime}, s^{\prime}\right)$ have the same distribution where

- $k \leftarrow \mathbb{Z}_{q}, I=g^{k}, r \leftarrow \mathbb{Z}_{q}$, and $s=r x+k \bmod q$
- $r^{\prime} \leftarrow \mathbb{Z}_{q}, s^{\prime} \leftarrow \mathbb{Z}_{q}, I^{\prime}=g^{s^{\prime}} h^{-r^{\prime}}$

Recall that the notation $a \leftarrow A$ implies that the element a is randomly picked from the set A.
4. [5 points] Enumerate all the points of the elliptic curve $Y^{2}=X^{3}+9 X+5$ over \mathbb{F}_{13}. You are allowed to use the software package of your choice.

